SOILMICROBIOLOGY

Distinct Denitrifying Phenotypes of Redominant Bacteria Modulate Nitrous Oxide Metabolism in Two Typical Copland Soils

QaoyuWi¹ · Mengmeng J¹ · SiyuYi¹ · Ji Li¹ · Xiaogang Wi¹ · Xiaotang Ji² · Birbin Liu³ · Xiaojun Zhang¹

Received 15April 2022/Accepted 25.Lly2022 © The Authon(s), undereach sive licence to Springer Science+Bainess Media, IIC, part of Springer Nature 2022

Abstract

¢ D c c s c 2 .ee.C.H.ee...e. c. s.c.s.C.mimiee sN_0e.C.C.C a c. а С. Сас сСС. с. С. . I , c c sC e e . . . ç te e 🖉 ۰. c c , 2 e 2 . c "Ce ç e 9 C 9 *с.*т ¢¢. N , O 2 c c e e . e fi. - a., . c. fC ся. Т.ея. ясе (FF) a c € (BF) ≥ € € e . » 2 e e e e . . (**riiS**, cs. . e FF., . . e a K. . w e e K. e K. K. e.∎ N_0. .∎ £. . .∎ msZ Ç cə for e e e e . e *s*C sC. H e e . . e & & e C. . L. L. c. e. C. e. ace a c . e 2 ¢. . 2 2 C 2 .∎N,0-e e ≥ BFa e a s ce..∎N_0-e.c FF.H 2 C C . .∎ N _ O . . , , , **, Rhodandbecter** , . Castellariella .e 99c .∎N_0 € . ¢ ° e B F c a . a c . Т. с s.e.C.F.F.e.s.s.e.c N 0 2 £ , , . e . e c . e .C . e.⊈ N_0 Ese sE c.se .e.C. e.C.C.T.e.m.e...e.M.e.e...e f∎f e c £ £, c, £ N₂O₂cc. э.т.уС e .c e . e . e e e e e Q. Q. a Q. Q. e. 2. . e. . e . e.€..∎N_0 e.s С э е . **ж** 2 N, Oe ¢.

Keyvads , c. , c. d. c. d. r. e.c. Bice, c. N. C.

Introduction

e c c e s . e s D c s e c e D . s те . e .C . .C . . .∎ec £ £ e £ 1.N 0 2 , c s e - 2 f 2 c. e · e · e . . a a... » e 6 . . . e¢ese.s.s.∎C0_3.A.c..s¢¢ese 2 6 5

c se (60%) **#**2 e c . .C. e (N O) a 4.De ه چې کې د د ک çç ¢ . c 2 N 0 2 c , c . **.** N *c c* e s s^C...e e 5..De cs. . e Ce. -2 e N . е К. **н** sce e . с £ . £ т.е.е e C c a a . . .**.** Ce.Creece naG. mB e e . c » Le, e L. L. e . M. N. O e e » c msZ), 2 ¢

c 9 £ £, . c. ∎i.e e. . e. # N_0...∎ С.А.сейС. с...∎ сСйС.й с c s. ce&&e e se N_0 e & & & e ¢¢e 2 se...e c e s £ . т ¢, . e e . e .mar fante e 🖉 🖉 F ee£Ca N_0 fi. ae c_4C∉Ce C. C. e. C. e. e. c. s. c. e. . C. C. . H. e. e. . C. e.

Bid Bijg Reged Rebiat Bije Adde Nice Rebin

. e. . e.e. « . . e. « . . e. « . e. (99.999%).#. . . e . e . ceses ce e se ce e . A s 6 ce с. э.е. э. 2.5 °С ... 7. э. с. т. е. э. с. э. с. ... э. с. ree 4. 222 e . **m** N₁O 2 N сс. c . 26.T c.aace e.e.a.meN_0 a e e e «C, e cacae a N_O. . c . е».е.12.S.H., £С.£С.е а с са (D O C). e s e e e e e c e (Ree S Мас e e 2 e a (C)

DNAEstuaction and Quartification of Denitrifying Genes

ு கூடி 0.3 . கூட்சை தி அதி சதி DNA 26. C 27, 28, DNA c ç, . 6 . 6 . 6. (. PCR) .∎165 RNA » с.**ж**. . » » » с.» . . . narGninKninS. nosZ. e∎te a L. C c e 96 £ £e (R c.e. Ba£e, S). De 2e PCRC С. е. е. **н** . . . С. . е 1 3

Community Analysis by 165 rRNA Gene Sequencing

- V 3 . V 4 . C = . 168 B N A Δ с *С* з С с с . 🖬 С с. с с e M.Se. . . 2 I c., U S.A.).Q.2 (I c . · . . . e ceste e . e . 🖬 . 29 Re 2 (0 T U C) . . C. . . . UPARSE.⊈Ce.∎. 30.I₂ es e e c UCHIME 31 a gC, eRDPcagGC, e 6. (9) 32 . F a ...е ОТИ » е »«С е е » е s - e e s C . . оти 🕫 . e U Ces c 2 297% c. fmr.R.e. e.C.e. 2 . . . е се.С. 🖬 езс. ОТ U e e ¢. e . c. . e e RDP c a & C . e (RDP a a a & c e e & 2.10) e ас. f∎ .∎80%.T.e.s...s. . . · c • 0 IIM E 18) 34 (. 6 2 e e c . K E e e . e . e . e . e 16S RNA e e Ce . e se C . C PICRUS 2 2 C C 35.Vaa ¢ с 2 C c ■ a a c = (M A N O V A) с**.** M A T L A B 2 0 1 8 2 (M 2 . W ¢Ic., USA). Les ¢Cc. a a f f e far e f e (LE .as e) a a f f a a f a a f . . » » е е б. " р. 0.05 » LDA Сс е 3.5 36. Т.е f∎eece£ s . . *.*C C 9 e 2 6 . . ¢. - 2 A N O V A

Isolation and Identification of Denitrifying Bacteria

T.ee ≥ 4C.marBF FF.mar . e N 2 5 0 + G e 2 e , c . e 1:10 0.85% gCa e.E.ac. .met. e Cele 2 c c.c. 1 / 1 0 T S A c c (M., c. G.) e 2 e cs sse cc 28 L°C . A. C. e. e. C. sce c. e. C. e. C. e. C. e. c. e. s o Coero o - e. E. e e . e ecc <u>C</u>e<u>C</u>.<u>C</u>PCR(ERIC-PCR) 2<u>C</u>cmara & a c & 37. R c. c & c a c & a & mar foree ERIC.e. € e e €e e c e . ∎ 168 RNA e e c 2 C 2 7 E (5 G T T T G A T C C T G G C T C A G .3) * 1492 R (5.6 G т « с с т с т т а с G А С Т Т « 3) » — «Се. . е с

Measurement of the Denitrification Function of Bacterial Isolates

T.e. 2.€c. 2. 30 L.m.e. ee c.se 2 2 e c 2 т. е c 2 , c e N 0 2 N 2 . c.e. .# асе а . e e e 2 C . e . C . e с. э cc. e 3.8 B.a.C. -0.505 L KN0 3 0.1 L N 2 N 0 e e Castellariella c . . Rincharder

Castellariella ... O FA 38 CA. . . тѕв eece 🖬 2 cece, L. L. ee R. e. L e 9 . 2 C C . C . e 0.4 . . (£ 2 e), 2 2 e . 0 2 5 . . ⁷ 10[°] се £С/ £С. Т. с. № ₂ О э. № ₂. ш F F . . . s se s e с. э e e e 26. e e

Results

Physicochemical Properties of Soil Samples

¢.∎BFa FF.a í∎ e e Çcc, eco T . C Ta e I.T.e.a.e.C.marae c.e ае. са.ас (WHC),а DOCаа BF. 2 . е. Н. э F.F. . e e . . B F FF.M.C . . *c* . . C . . N 2 5 0 е й е й . е е , s с. а (Тае S1), а c Н. I с э.С., С. . . . c c. . c. . se c 2 C C e e . . н c ст... • C e e . e N 2 5 0 .∎ B F . I . » . × .∎'e

GaskineticsDuringAnarchicIncubation

 $e c e s \mathcal{L}_e$. If $e e ..., c ... e \mathcal{L} \mathcal{L} N = 0$ s c c ... s e FF s $s \cdot s = e c e s \mathcal{L}_e$ = 1.1.2 ... (F ... i.c.).

The meece rescences seen endering a center BP s PP s C concert (**P** 0.037, s A N 0 V A) s me 96 , s es e C.T.e s N₂0 ace, is see BP s C 2.3 6.2 eC, i.e. s is PP ene , e es e C (P i 1 m);

 T. e * c c.
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

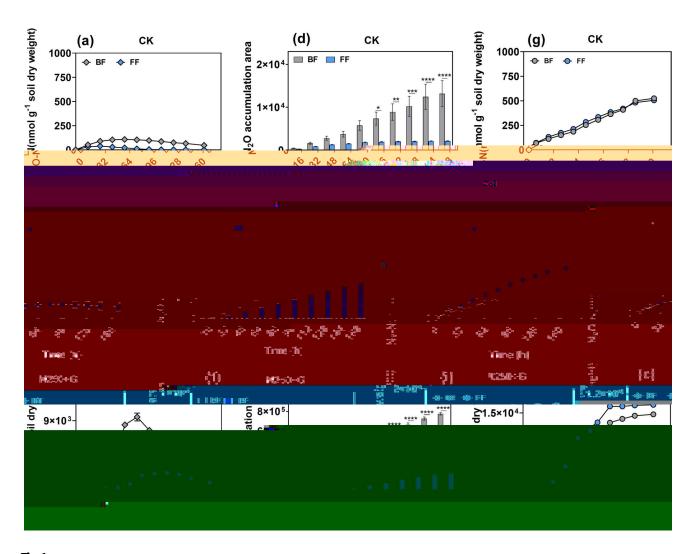
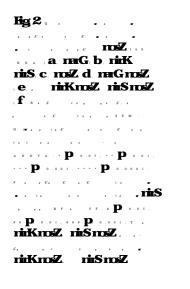


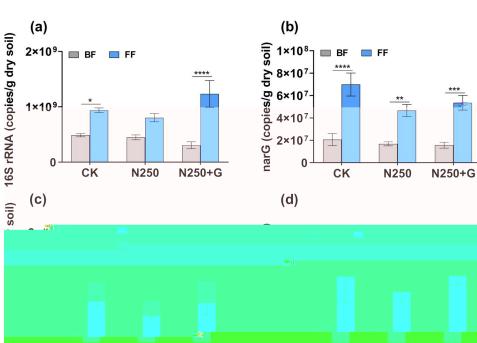
Fig 1 🔬 c fC . N 0 2 C C , *c* . **d f**. , с£...**т** - 2 A N O V A e . **.** N , , s i **gi** · p • . • s . • · p • . • 1 . • • · p • . • • 1 . • • · p • . • • • p • . • • • • p ír,

Bid Bij greged Rebiat Bie Adde Nice Contain

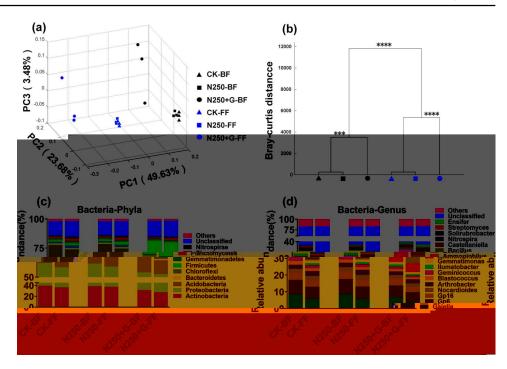
йей , , еейвесе , , с вей

I e e λ , N_{2} 0 λ c c . . λ λ N_{2} 0 I (N_{2} 0 + N_{2}) B F e e c β , β , e . . . e . λ . . β e F F e λ $e\beta\beta\beta$ \bullet . e λ e e β , \bullet . λ e λ . c β e.


Quantity of Denitrifying and 1651RNA Genes


Т.ес е.С.я.е. 165 R.N.A. (F 2.), тКК F 2.с.)	
, MOZ(F.2) e e C e e C . c i e FF	
. » B.F e.C.K. » N.2.5.0 + G	
ее,Сеея,Се FFе N 250	
mag, mis	
ca e FF. a BF r a ea e G.T. e a .	-
magnosz, f 2, e) of f co w.e. B.F.	
FF.e ce	
nikknosz, nicsnosz,,,,,	,
, 102 165 RNA (F. 52), c.) £. e. £. c.	
Marece£BFsFFsese\$C(ⅇ\$ee-	
a Maçani ça Ç).	

Variations in Morchial Community Structures

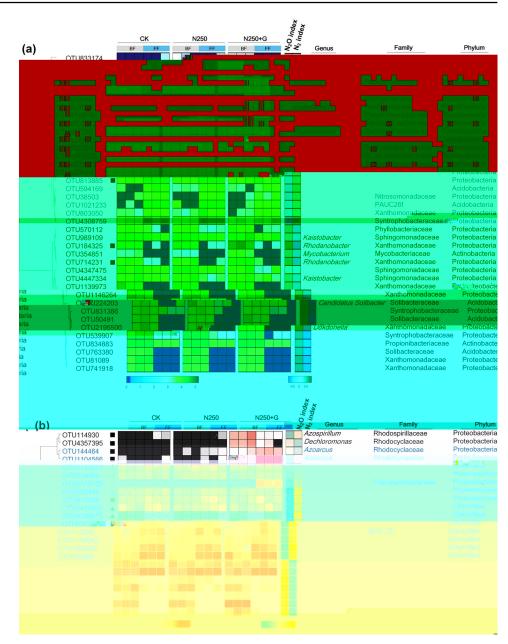

I 18 £ 2 e £. 2 2 .**≡**364,452. 165 R N A se e e e с. c . . . e e ^c 6 5 3 6 . c. e e e ç c a , c FF (F в с . . . , c. c e e B F a (F 6 2 C e 2 C c g **p** 0 0 0 0 1 M с. C > ç . *c* К 2 5 0 a (F . 3 c g for e e £. c . 0 + G (*** **p** 0.001 с, . **#** £ e :C)

e e . . e 2 A c 2 C e -2, A c Bace . . c. c е.С. G.е 2 a e e C. P a c 1 2 . 1 1 3 . 6 % .**≠** e ≥€ e e

Fig 3 . . , *ç* . **-** C ç . . ç ç (**r** . . е. с. т 2 P C , ¢ Α . . , s. , . . a е В э С э,Се В э ç. .С.,С. с. с. с. с. е. ANOVA e.C., * * * P 0.001 ···· p • • • • • • • b • • • d

ace a (F. 3c).N	s , c	Se Secce	e ^c .e
ace a e	F c.e.¢C.		
T.e º e	e 2 (e 2 e	a.ace	1%) BF
a FF e e a			
e£ece.c.	Gaiella (G p6 Gp16 N t	cadoides
Arthobacter Blast			
Germatinonas An	mariphilus	Bacillus Ca	tellariella
Nitropira Solirul	-		
(F. 3). T. e. e. a	e a . a ce	. 1 . e & e . e .	, , , , , , , , , , , , , , , , , , ,
. e .#£ 2.6 f.	e ^c e	e a ca	"C.c."C.
Г.ас.а., е 🖉		. эсэ	c fe.
Amoriphilus	с. е	. ¢ ¢.	Castella
riella Bacillus		c.e.FF.	a B.F.

Rediction of Functional Denitrifiers


.∎65360TU£C e . e.C. 1197 s , c, 7 3 2 e m Z. е с е с э nor**B** e e , mB Т. е. S. э e 2 e e B F c a . . 2 F F , c c 2 e e Ce ce c a . . . e е СК 2 N 2 5 0 £ s 6 nosZ . S 3). H e e . . e S . s . c **.** . (F e 2 -F F , c c . c 2 B F e & (F. S3c).T.e.B.a . с с. . S 4 g ,) nosZ BF₂ FF e e sC -. S4 е., 🛥) с э a c e (F e c 9 f∎fe e . Т. е е » е «С ¢, s . . . s . **mmB** msZ. , а.ес асеа. 🖬 . е С. К.а. N. 2.50 . . . С. е. е. С. . са

norB-ContainingBacteriainTwoTypesofSoils

т., тов., отис., , ,
á., á, á e, Ac áceá, Ac áceá, s
Pesces, sfesf.eses(eses
» ce. 🖬
оти се се се с пове с
e e » (F . S 4). A . e £e e e », 7 » c e . e 🚾
dorella Kaistobacter Lysobacter Phyllobacterium
ee es a BF, s FF.A.e ees.
Themonores, Castellariella
FF. 3 BF. eN 250+G Fees
eele ce ce ce mB, n s ees
Azopirillum Decharchuras Devosia
Richarder, , , , , BF, , FF.
A . O TU O TU 1 1 4 9 3 0 . Azospirillum
.c. a,C.e. c.e. BFN 250+G, C.e. a e a e
c e a e N 0 / (N 0 + N) a e 2 1 0 T U C
e c.e BF(e£ecs.eOTU£sse . Kristo
bacter. Rhocknobacter
$e = N = 0 - I (N = 0 + N = 1) - a = (F = . 4 - a) . I = c = a \cdot c = . 1 - 7$
OTU,Cec.e FF,C.e » e » e c e ».
$. e = N_{-2} O / (N_{-2} O + N_{-2}) + (\pounds e = S e = M + e + e$
e e 2 £).

Bid Bijd Reger Rediat Brid All Max Addison

nnBa e OTU_sCe a е оти "С ." е.е.Се ОТИ_ССс nosZ , norB , а «С. ж. е.) . ж. е. 0. Т. U. «С. . .

nosZ-ContainingBacteriainTwoTypesofSoils

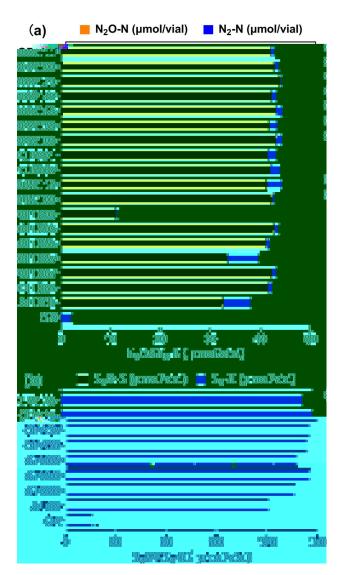
 £ . c 2 e 2 e c e 2 e . . e N 2 / (N 2 + N 2).

DenitrificationFunctions of Representative Bacterial Isolates

D Springer

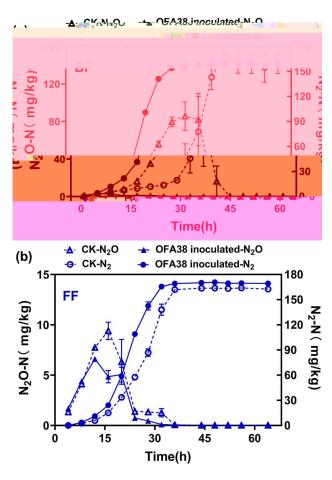
PP
 Castellariella
 e e e e e e

 Castellariella
 e e e e e e


 Castellariella
 ru
 e e e e e

 Castellariella
 ru
 e e e e e e

 Castellariella
 ru
 e e e e e e


 (T = e = 5.5).

. c. т с c . Castellariella , Rhodardbacter . . . оти . . c.e. N _ O . *c* .∎ N _ 0 (F £ . c c . 5 .). 0 2 £ N O . *c*. . c e . 🖝 2 . . .

, Rhodandbacter . .c. £ . e B F (F отп 5 a), H e e . c. . . c , Castellariella » e . се 2 2 C C 0 (F Castel 0 e 2 А e , e **lariella Castellariella** 6 **Castellariella**

c = E = 1, e = e = (F = 6), D = 1, e = c = 3, e = 0 $(F = 63), S = c = 1, c = EE N_{2}, 0 = c = 1, s = 1, e = 1$

Bid Billy of Recta Checking and Believe and Be

Discussion

E ectofNitzteandGuroseonBacterial Communities

a a a la de la mer la mer la mer de la de .e.C.c.e.mai.e.C.c.s.c.с э э 40,41,C,C,C,C,C, c .C.e . <u>,</u>, <u>,</u> , . ». e cesse eesa ce .∎c c a <u>6</u> <u>6</u>, <u>6</u>, c <u>a</u> <u>6</u> F e 2 Armeriphilus. Bacillu, , p., , , , (Castellariella pp. . c. e . e . c. e e & 42.

E ectofSoilNitrogenandCabononN₂O Accumilation

T.e.a.e.B.F.a.F.F.a.C.a.C.c.c.e.e.c.c. N 0 2 N e 7 2 C m c 2 5 0 + G N 2 c. £ c. £ £ £ e . e £ e . c. , e . e . e . e . E e 2 e ×.∎°e 2 2 4 3 a . c _С. э. С. э. N 9 C . e.C. . e.C. . e. C. e. C. .∎°.e e .⊂s e a 44.No acc. е 7-» е», се е с. с. эс <u>в</u> С.С., с. э c sc...Mee,es€. e . . . e f∎ie e ⊂s £ a e c e.c.»e.e.» G...e.e.e.G с es N, O e & & & .

Ma C. e.C. cae.eefmiec.C.mi e a ca . · c e ÷ £ . ∎ N _ 0 e N 2 5 0 . . ç , , , ese sc N₂Oe*CC*.s с.» е е .**ж** с e.c. s^ceese.mecs gC 46,47.T.e.e.marer.e.scc...s c 9 9 ■ N _ 0

.e.C. for e . e . e . с 2 . . e . 5. е с. с. е . са ас N₂O₂cc. 2 . #* ar β ≥ β.T.e.e.ar e. . . C . . e 14 e e e . e c e 6 . s . . e ca ac . c.

££...N_0-ees scescs mВ nosZ c. . . e ee¢C BF FF.T. C 2 c 2 c 2 C 🖬 .c . . . C e NOBF.Is, c e N 0 e & & & 5 4 . I . & & . . e . . e , _C, . nosZ e e ç , non B . a B. F., a C. C. е.Т. «С » . e S . a ee.cs.marN_0e.cFF.e.e.e.&ece.mar e e «Ce... e c e N 20-e.c

Rhodanobacter • .# se.Csse 2 e ie.af e a aca ci i a C i e 55 . "Ссс.е с». .е е.С.ше.ше Richardbacter А. «С с е » с е е е . 🖝 BF . ,C,C. . . , , , , , , , , **, Rhodarobacter** 0 2 5 5 0 T U & .» & eee.e. e 🖬 c e »... 🖬 e Ø Rindaro 17.1.2 · · · e e · · e · · e bacter . . . ç 2 C C (C . . e N 0 9 C C . ट ट 🖬 Ç 7. с **Castellariella** ... she, e emrecee.ce se she.h e sCeseš6.Heer.eN_0 . e . « e e e . e . l . C.C. . e e. **, Castellariella** 🔒 🔒

N₂OWetabolismof Isolates Conesponding to the Key Bacteria in Soil

e «C c . e «C PICRUST.ec , <u>с</u>. . е эс. э. 🖬 с c . Cecee , e Cae ace a.m. .e c c c f.c.e.e.e. . . . ¢ . . ¢ . с с 2 .**н** , "c Rhotenobacter . . . 2 £ se£c e£. . e e.€.¢ s . s 0 T U .∎ ÇəeÇc. e.ceN₂O.C ç. Rhodandbacter B.F. ¢ . **=** . eeßikie e wiiwe eeike es£ .∎ .e.€ N_0scc. . . B.F. M. e.a. e ce е.с., м[.] N₂0 е., Сэс,С., м Castellariella F F

, Castellariella . e c . e . e e c e e . c ...∎N 20 FF. I a -. **. Castellariella**. e ce e.ceN,Oe&&&.e.c.se e s.m. Ssce BF.e. e 2 N 0 e c . . C 🖬 , c c 66 .

Conclusions

T. P.P. e P. e P. a . e P. . e P. . e P. a c. . a £ ££. fire e N₂0 acc. . a . . a . a aç c c, a , . . B F A C C . 1 . 6 . ç . . э. с N O acc c fare e cesC a e a DOC c . **s** e e & & & & . T f∎ie e ⊂ ¢ ¢ • • . c e.e.s.e.s.C c N 0 E.A.E. e. E.s.e. s.c.e.s. .e. *c* . c 2 , 2 , e e.c. e.N.,O.s.scc..s.N.,O.H.e.e. FF fC 2 C 2 . 2 C .∎ .e.a. e.c. ∎N_0 Ν...Τ... . e e ¢ . ¢ ¢ · • • ¢ ... » N₂0 e LL L for e e e c. . » L L , ç . **#** . e . e - c e c . . e.sce.eN_0_C . . e £

 Alfrection
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 Firsting
 T. c
 F. c
 T. c
 <thT. c</th>

Deta Asailability

Bid Bijd Rechedial Brie Add Max De Velos

Declarations

Conflict of Interest Transmission of the Contract of the Contr

References

- 1,С., S., I. е. э. S., М. э. ,Сэ. э. К., S. е. К. (2.0.1.1.) N. е. с. с. селя е е Білябас, ее ба ж. ес.я. е вб. М. с. в Б. Е. 261282.292
- 2. R. 2. J. C. 2. 2. A. R. , D. 2. e. J. S. , P. 2. R. W. (2.0.0.9.) N. . , C. e. 2 e · e · e £. £2°eeee.e.e (N 0): .e 21¢Cce . Scece 326:123 125
- L , . W., . 2 Q.F., C., e. L. (2016) G.e.e., . , & e. 2. 3. D (СО₂, СН₄, N₂) е *СС* (с. т. *С* (с. т. с. С. т. з бит. е (С. з. с, , с, ,, , , с. Е. 126198.106 Е.,, , а., м., н. с. с.а., , , с.а., м., с., Ка
- 4 .
- В. е. эс. В.э., К., В.э., С.Е.М., D.э. е. э. М., К.е.Се. К., е.с. -5. ε β ε − B ε β ε S (2013) N . β ε ε ββ β ... β β е Дэ... с с ДДе Дэ... с с £ ? 4CT = 4CR S c B 3 6 8 : 2 0 1 3 0 1 2 2 Р
- ., a J, L. L.M. (2014) De 9:092055
- 7. L. c., C. P., B. . . . K. L., B. e. . . , C. L., S., a., e., J. P., B. a. e. L. R., F., C. -

 x
 x
 A
 (2 0 1 7)
 P
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
 x
- 8 Pes , P. , P. C. N. 0. e. , C.C. , C. s. e. S. e. c. e. N. 0. -... э е.с с эс С.эе В 24:360.370 с эс
- Н. Н.W., С., е. D., Н.е. J. (2015) М. с. э. е. э. **ж**ее. С. э.
- ., 3. **.** , 3.1 (¹ 0 0 2) T , , . . 3, 1 3 4 . . **. .** 3 3 4 . . 1 0 S., e 2 C 2 S., A C 2. G 2 C, 2 e B 9:10801096
- 11. F A.B. e e C.G.e. > J.B.e.> A.L.e.R. . (2019) T.e а с.а-. c S B B c . e 1 3 6 : 1 0 7 5 2 4
- 12. L. B. B., M. e. P. T., F. C. e. J. A., B. J. e. L. R. (2010). D. e. сэ сд. д. эдс . э сд. • N С э м₂ . . с эдэждосд . Н. FEM S М с e c,C .∎NO, N₂0 Ec 72:407 417
- э LQ, , , э J, J. Т (2017) L эеееке N₂Oе ,С-13.
- s c e э с. . э б. б.э.е.е., с., е.б. е.б.э ..е.N., С., э Р.э., Р.L. S.О. е. I.I.:е. 0.1.54773
- 15. Fa W S., a D.D., W.a. L., H., a B., W.a. N., L., J., L М., L., О., э. С.В., W.э. Q., С.э. А.С. (2018). R. с. С. С. с. С. . ¢ ≥ \$2 \$2 ≥ e ₩ ≥ e - c c . F 9 : 2 5 2 9
- 16. Rc, JJ, Hec, eRS, BePJ, CacK, MDD ه∎. ه د 2, ه (2003) C

. . 2 69:5974 5982 Мс

- 17. J. M. M., T. J. H., W. G., L. J., ..., W. G. J., ... T., W. J.
- 19. W » e <u>c</u> e M D , M e 2 c e f > e £ · . 2 e Ø : Ø . Ø . Ø . E e . Ø : E e А 16:2143 2152
- 2 0 . **ж** N . е э С С . – э : э
- N 22 e e . . . e 106:3041 3046
- 2 3 c. . , C. C. S c. T , E 666:176 186 . . . W (2016) N + c , C , C , c , c , L. S.Q., e. J.G., H. . و د م. د م. م د م . د م . . . <u>.</u>. е сесе£.£..е.N. е.Е.е.£.£е.е.э.е.N еэ,СС, э. Fe С., Re,С194:7582
- , . . F , S . Р., Б.а. а. Е., С. а. (С.Р., С., а S . . J. Т. » Н. S., J., C. c. a. R., K. a, C. A., M. a. . V., M. e. e. C. S., M. e. e. C. V. ЕС, ээ£Ссэе, э эС, эеВ 25:37063719 тс. э - N 0 с 6.6.С С. £. G
- . е е е 25. . », L. , L.F, W.J., H.H., H.g.J., ... L. (2021) Eferce 🖝 а. с. с. р. р. р. с. с. р. с. с. р. ¢:11
- 26. M & L, D & C, P, B = e L R (2007) R e $2 \int_{c}^{c} e \int_{c}^{c} \left(0 \right)_{2}^{-}, N = 0 , N = 0 , N = 0$, N = 0 , N = 0, \bullet с.с. .**т**
- 27. P. M. M., N. C. J. C. M. H., J. C. C. S., G. C. A. L., S. e. C. e. J, B z g . J (2013) I G , i c . **.** 🔳 c 2 DNA 2 RNA 2 gC e ¢ ¢.s c.e 63:3749
- 2 8 G, <u>c</u> R I, W, e e A S, O, D, e A G, B + e M J (2000) Ro, e., arceoc arDNAo RNA ar o . o e e e e o e e e o DNAo RNA ar o . sfe c s c ç . A . Мс Е 66:5488 5491
- 29. W . . L P . e. e. f. . . f. . . . e. e. сс£се.ее. S. £се.£4:е0049619.

» RC (2013) UPARSE: . . асс. а е О Т U Де. . Д U Д., с с

- 33. E = RC (2010) See c. = c. Ce e 6 .w e
- C a , a , C J G , K , c , C J , S a , J , B c K , B , C , a εε J.K. . R (2010) Q 11M Ε 2 β 2 2 β β σ. £e..e c зз. Nз Ме. £7:335336
- 35. La eMG1, a e e J, Ca. a,CJG, McD a D, K D., R.e. e. C.J.A., C.e. e. J.C., B., e., e. D.E., T., ... e. R.L.V., K. R.B. R.G., H., e., e.C. (2013) P.e. C. e. e. C. 9 - -e. e. e. C. E. 165 R.N.A. 9 e. e. e. E.e. c.e. E.N.9 B. e. 31:814 821 S.e. a.N.1.9 J.W.9 L.G.e. E.D.M. . E. L.G.9 e.
- W.S., H. . e. . e. C. (2011) M.e. » e. C. » e. çe e эе.ээ.GееВ 12:R60
- 37. W e G F , P a L , D . H M , C . e J , . . a L P (2004) E R 1 C P C R D N A · » «Ce c e e-6, e-1, e, mar e-6, a 6, a 6, a - 2, e -6, e - mar a 2 C . э. "С с Me. 59:91 108
- L. B.B., M. J., B.g. J., C. L., B.J. g. L.R., F. C.g. J. A. (2013)
- 40. L. J., L. T., a. D., . a. J.J., L. A., . a. B.Q. (2015) M. c. -э££сэе эссэ ЈІе А 14:250002511
- 4 1 . K . J , L . D , W a S H , L C H (2 0 2 1) D a c c . a c C
- а Азаза 🖝 е С. Е. с Ec 29:140 150
- A J 6 4 : 7 8 1 7 8 9
- 44.W.,L.G.,B.e.s.K.,F.B.,.e.,B.e.N
- 45. Cə -K e S.R., S. e K.A., B. e D.J. (2012) T. e eñne e 4C .nn

e e ¢ ¢ . ж. с. т. а. а. , . FEMSM c E c 81:660 672

- 46. . W.G. (1997)C. • c . M. c. M. B. R. 61:533.616 ас. э. э.б.б. **ж**.а
- .мс м в к 611533 616 Рэ Т. N В.J., э О (2013) М г ггс с .г э г г г Х.д. 9 Х_дО эсс. э г .сэ .Е Sc Т.c. 47(110.83, 110.94
- c.e 40:2553 2562
- 50. L 5Q, 5 L N, G a , J G , L . SW , S , e Q R , J W (2017) М. с. э.э. э.с., с. с. с., э.с.э.
- АМ В Е., е «С.«С. 6:37
- 52. C. P. F. F. F. L. C., S. A.L., H., P.R., T.J., . Р. P e » N 0 e ££ £ » »££ с » e с e£. S B B с. e 93:131 141
- G, Мэ, е, С. D, Нэ М, Вэ F.B, Ве A (2015) Г. эс ез. Се эзе ез. С В э е О, М э . е «С D. Н э е К. G eefee e . е,С. **ж** Nээ Sэээ,С. Мс E c 7 0 : 9 8 1 9 9 2
- L.S.A.He.P.C.B.D.B Ρ. 54. . » F, J <u>в</u>ССМ S a A , M a P A (2013) L C C c a e Contra C есс С. . 15 М.Е.Ј.7.:1609.1619 55. Н. . J.L. . ЈЈ. W.е. D., . . . Р.С. А., . . В.К., С. е. . Ц. Ј. Ј.
- ₩N.e»¢C.».Pe.¢C.,ee30:7386 .

е Nэ.e. С. е. s . .