# Substrate Engineering Enabling Fluorescence Droplet Entrapment for IVC-FACS-Based Ultrahigh-Throughput Screening

F qiang Ma,<sup>†</sup> Michael Fi cher,<sup>‡,§</sup> Y nbin Han,<sup>†</sup> S ephen G. Wi her ,<sup>‡</sup> Yan Feng,<sup>†</sup> and G ang-Y Yang<sup>\*,†,#</sup> ŧ ΚŹ Ļ В J , 800 . , 200240, C D <sup>‡</sup>D , 2036 6 1Z1, C С В С С , B 1 # (CICB), E С С В С I , 130 200237, C

**Supporting Information** 







ff

fi

W

W

fl

-7-

W

fl

<sup>20,21</sup> H w

7-

ff . I C-FAC w//w,

- Y <u>before</u>, C, Y fl Y A
  - ч<u>у</u> .<sup>7</sup> С
- FDE v
- ίνζι μ. . . . . , fl
- <del>after</del> س
- fl , I C-FAC
- I w, w, w, w, FDE ff
- wywy FDE ff . FDE ff fi , wy FDE wyfl fl . wy
- fl vý , FDE I C-FAC vý vý

#### **EXPERIMENTAL SECTION**

- Synthesis. fl -7--4-3-(CH, C, 4), 7-7--3-(HCCA, 6), (HC, , 13) -4 1. I fl (14) fl (15a 15b) I 2. D ( ) ffi w ACD/I-(ACD/I-:// . / 2/ 2.0, 5.0.0.184, . . ). Cleavage of 1, 2, and 3 by Phosphotriesterase GkaP and Mutants.  $M = \frac{1}{k}$  baci k hi H A426 (G Ge -) 26A8C vg 26A8, 26A8 , <sup>22</sup> E fi
- , ( ) w

-2550 405 4-). E ( 1, 1) w\_ F-7000 2, 3 (F F ) w (H E /E , 400/450 385/450 340/467 , fi (\_\_\_\_\_\_ w 1 1× B (H 7.4) . A Ŵ fi W, 0.2 w 1. fl ffi ffi 4-16000 5/( W ), fl ffi 4, 6, 13 ( ) ખુ 1, 2, 3, 2554 F \_μ F 3992 504 F ( 3 ). 4 E. c i G -26A8 M 50 µ Β, ( w D600 = 5.0 w 50 µ́. B ) 37 °C 10 . w 1.5 🗜 100 µ'r В; E 400 µ w 0.2 . A fi 37 °C fl 2 . Ŵ Ι 5). ( Retention of Modified Coumarin Fluorophores in 13 vy Droplets. C 4, 6, 1× B 100 µ (H 7.4) w/ /w

ff .F fl flwg (BD FAC A II) BD FAC D F C > 10000 C > 10 000. fl 4, 6, 13 W DA I fi ( 375 450/40 ).

<sup>1</sup>Single-Cell Enzymatic Reaction in w/o/w Double Emulsion Droplets. *E. c i* G

![](_page_1_Figure_22.jpeg)

#### Enrichment Analysis of GkaP-26A8-Expressing Cells. С fl G Ŵ <u>6</u>). Ι ( G -26A8- C **C**18 fl G С -26A8 w W b , G -26A8- C Е. **C**18 Ŵ c i 10G, wj Ŵ С fl G -26A8 (E. c i 10G С G -26A8 C fl G -) (E. c i 10G С . -C18 1:1000 ) wj 1:10, 1:100, Ŵ w/ /wj ,

![](_page_2_Figure_1.jpeg)

 Evaluation of FDE Behavior of Substrates 14 and 15

 in Droplets. I
 FDE
 14

 15, E. c i Br 21 (DE3) C
 (
 )

 AFE
 (
 E 28 - AFE
 )

# **Analytical Chemistry**

°C. M , 10 µ'r 14 15 (10 1 200 µ. D, ) ખુ 37 °C. F ંતી ખુ fl , 16, w<sub>y</sub> Α F 430 375 , W fi 530/30

# RESULTS AND DISCUSSION

Determination of the Critical Hydrophobicity for Oil Permeability.

![](_page_3_Figure_5.jpeg)

![](_page_3_Figure_6.jpeg)

Compound 2 Is an Effective FDE Substrate for IVC-FACS of Phosphotriesterase.  $\sc{sq}$ 

![](_page_3_Figure_8.jpeg)

DOI: 10.1021/acs.analchem.6b01712 Anal. Chem. 2016, 88, 8587-8595

![](_page_4_Figure_0.jpeg)

G -26A8-Figure 3. H 1, 2, 3 Ē. c i w/ /w ખ્રુ fl . B 1 2 W (A, C) ખુ (E). A 3 w\_ 60 , fl (B,D,F). H vų , vų Ŵ 1 (B) .F 3, fl ખ્યુ (F). 2 fl ~0.1 Ι . M . 1 2 w\_ w 3 w w w . F 20 000 ¥

![](_page_4_Figure_2.jpeg)

| ( E),                |   | ffi     |
|----------------------|---|---------|
| . <sup>10,22</sup> G | • | I C-FAC |

G vự 2 E vự

![](_page_4_Figure_7.jpeg)

 Figure 5. C
 2
 . (A)

 G
 ····
 (26A8,

 26A8
 , 26A8C)
 ····
 2. F

![](_page_4_Figure_9.jpeg)

# **Analytical Chemistry**

![](_page_5_Figure_1.jpeg)

,

2,

DOI: 10.1021/acs.analchem.6b01712 Anal. Chem. 2016, 88, 8587–8595

,

Article

8592

E-

fl

W

40-

2

A

Ŵ

Ŵ

I

Scheme 1. Chemical Synthesis of 15a and 15b (A), and 14 (B)

![](_page_6_Figure_3.jpeg)

, ,,

 $\mathbf{fi}$ W,

H, 18 ખુ , **(F** 7A). 16. 14 fl 15a, 15b, 1 2. I Ι , 23 1A).<sup>31</sup> 24 ( fl w 32 25 26 w 25 Z 15 С fi fl w . M fl fl w 33,34 F fl 14, 27 vy 4--3-W. 29 28. 28 w fl **29**.<sup>32</sup> w 29. 4 HC / fl 30 44 14 49% ff 29 1 fl .<sup>33,34</sup> fl , ્(4 ખુ ).

.

# Analytical Chemistry

. FDE , W W, w, fl W I C-FAC Α FDE

32.33 fi .

# ASSOCIATED CONTENT

#### **Supporting Information**

Ι

D I: 10.1021/ . AC .6 01712.

А ( DF)

# AUTHOR INFORMATION

#### **Corresponding Author**

\*E- : @ . . . : (+86)21-34205079. F : (+86)21-34207189.

### Present Address

<sup>§</sup>(, .F.) G H, B 10, A-6250 K , , А

# Notes

fi

# ACKNOWLEDGMENTS

- М В . 2012CB721000), M С (973
- М . 31470788 F С (
- 31100611), M Ε
- С С G , G С в , С .D.
- . F. . vy А J
- ۰.F. Ewg F (F F)A
- .. F (J3293-B21). Ŵ
- Ζ Ι &
- С В J . ,
- flw 1

# REFERENCES

- (1) , M. J. Na. Che<sup>™</sup>. Bi . 2009, 5, 567−573.
- (2) B , ; H , G.; K , ; F , ; J.; , K. Na e **2012**, 485, 185–194. (2) B
- (3) A , A.; A , G.; B , K.; ,.; ч<u>у</u>,D.. Che<sup><sup>M</sup></sup>. Bi . 2005, 12, 1281–1289.
- G
- Bi che<sup>m</sup>. 2013, 435, 93–98.
- (6) H , E.; G , , .; , .; B , A . Bi  $che^{tm}$ . Bi ech . 2010, 161, 301-312.
- (7) , ; , , J; F , Che<sup>M</sup>. Bi . 2014, 21, 414-421.
- (8) Huy, B.-. Bi ech . Bi ce E g. 2012, 17, 500–505.
- (9) , ; , , ; , , ; K , , ; W J. Bi<sup>M</sup> . Sc ee i o 2011 16 285 204 . Sc ee i g **2011**, 16, 285–294.
- (10) G , . D.; G , . .; A , .; , .; , G.; B , H.; B -D , .;  $\dot{f}$  , H.; f , .; , I.; , J. $\dot{f}$ .;  $v_{4}$  , D. . Na . Che<sup>m</sup> . Bi . **2011**, 7, 120-, .; 125.

- (11) , F.; , .; H , C.; F , .; , G. PL S O e 2014, 9, 89785.
- B , .; , H.; , H.; , C.; , I.; F , . I . J. Pha<sup>M</sup>. **2001**, 215, 13–27. , K.; G -K , J.; , B.; B , J.; -, C.; (12) B
- (13)С
- , j<sup>2</sup>.- .;
- , K. D. C id S f., A 2000, 174, 159-(15), É.; 167.
- , F.; , . F.; (16) C , F.; , F.; , G.; , A. B.; H . .; H , F.; A , C. A a.  $Che^{th}$ . 2009, 81, 3008–3016. (16) C , A. B.; H , (17) H , F. .; J , K.; , . A.; , J. A. J. F i e  $Che^{\mu A}$ . 2002, 115, 119–128.
- , A.; H , .; F , .; K , .- .; J , .; , (18)
- .; C , D. . Scie ce **1997**, 275, 823–826.

- 83, 2852-2857.
- Che<sup>1/1</sup>. **2004**, 279, 42787–42793.
- (24) Z , A; D , . .; K , B.; C , . .; F , .; H , F. A a.  $Che^{M}$ . 2014, 86, 2526–2533. F
- K

- (30) . D.; C , .- .; , . . Che<sup>M</sup>. Sci. 2011, 2, 521-530.

- $\begin{array}{c} (36) \ A & (37) \ B & (37) \ C & (37$