BIOTECHNOLOGICALLY RELEVANT ENZYMES AND PROTEINS

Comprehensive characterization of sphingolipid ceramide *N*-deacylase for the synthesis and fatty acid remodeling of glycosphingolipids

Yun-Bin Han • Lie Wu • Jamie R. Rich • Feng-Tao Huang • Stephen G. Withers • Yan Feng • Guang-Yu Yang

Rece ed: 14 Oc be 2014/Re ed: 14 Ja 4a. 2015/Acce ed: 19 Ja 4a. 2015 © S e -Ve a Be He de be 2015

Abstract S d ce a de N-deac a e (SCDa e) ca c ea de ae a e e e b e eac С d d ed e ed. W e ea afte ee ac e SCDa e c d, e ae ea e c a ac e ed e e.I , ee ac e e SCDa e Shewanella alga G8 (SA SCD) e e e a ca caace edadcaed ec eca a a abe SCDa e Pseudomonas . TK4 (PS SCD). T e a e d c a d e c ac H a 4e SA_SCD, e e H 6.0 a d H 7.5, e ec e . B ac e e b ed b Z^{2+} a d $C4^{2+}$, e Fe^{2+} , C $^{2+}$, N $^{2+}$, M $^{2+}$, Ca $^{2+}$, a d M $^{2+}$ ed e d c ac ba b ed e e c ac . SA_SCD ed e b ad 4b a e ec c b d a d e-. I a , SA SCD a a b ade ec c ac

d acce a ce a d e PS SCD, e ec a 4 a 4a ed a ... ac d a d a ... ac d ... e... ac ca. F4 e caa e eaed a $e k_{ca}/K_{M}$ a 4e e d cac SA_SCD a 8.9- d e a a PS_SCD GM1a, e e a 4e е e c ac e e 38- d e ea cacda d 23- d e -GM1a (d18:1) a e PS SCD, e eccaa_cee.Teb ad a acd ec c ad cec, ee, eeee ee SA SCD Escherichia coli, a e a be e b ca a a PS_SCD e e ad 4c.4 a e de с d .

KeywordsG_c $d \cdot H - e$ $a \cdot e \neq d$ c $a = \cdot S$ $d \cdot e a = d e N$ -deac $a \cdot e \cdot S$ S4b $a \cdot e \cdot c$ $a \cdot e \cdot c$ $a \cdot e \cdot c$

Electronic supplementary material T e e e a ce (d :10.1007/00253-015-6421-8) c a 4 e e a a e a, c a a abe a4 ed 4 e .

Y.-B. Ha \cdot L. W4 \cdot F.-T. H4a \cdot Y. Fe (\boxtimes) \cdot G.-Y. Ya (\boxtimes) Sae Ke Lab a Mc ba Meab , Sc L e Sce ce a d B ec , Sa a Ja T U e , Sa a 200240, C a e- a : e 2009@ 4.ed4.c e- a : a @ 4.ed4.c

L. W4

SaeKe Laba Eecaa ca Ce , Ca c4 I 4e A ed Ce , Cee Acade Scece, Ca c4 130022, Ca

J. R. R c S. G. W. e De a. e. C e ..., U e ... B . C 4 b a, Va c 4 e, B . C 4 b a V6T 1Z1, Ca ada

Introduction

.c d (GSL) a e a c a a c c -A d a e ce A ace a a e a e e e a a e d (GSL) a e a c a a G c ce **4** a a (We e e e a . 2009). T e a e ed a a e a ca ce e (B4 e e a. 2000; Ha 1998; W a d Y4 2002) a d e GSL a e e e e a e a e a e a e a ca ce ad ef a de e e a e d ea e (Ge e e a. 1991; Ka e e a . 2007; Sc c e a . 2013). H e e , c e e 4d e b ca 4 c adedee a e d 4 a e bee e e e a eedb cae e a caed, l e a e-cae _ e . W e e а GSL a 4 a 4 ce с de, d4c e e a ed a a e 4b ec e a a d ea e, e e e e , a d ca c (R4 č ć a d Ma ć 2004). T e c e ca e c e GSL 4c-4 e e 4 e a ac a , c 4 , e c , a d de ec e , a e e e c a e a d a e ec c (Va a a d Sc d 2000). E a ca e b GSL , e e a d, e ca ad a a e d4ee 4c e e e e, de eac c d , a d e ac e d4c 4 ca (R c e a 2011; R c a d W e 2012).

S d cea de N-deac a e (SCDa e) a e e a ca e ea ab caa e e a c e GSL ce caa e e e e be d / e e a de a e be e e e a ac d a d e e ba e e cea de e GSL (F . 1a). T e e c ac SCDa e a bee 4 ed e 4 e a e b a 4 GSL (M 4 a e e a . 1997, 1998; ecee4eeacGSL .F4SCDaaebeeedNocardia(Habaaea. 1988), Pseudomonas. (Iea. 1995),Streptomyces. (Adaea. 1995), adShewanella algaG8(F4aea. 2002), eece.eeeePseudomonas. TK4 (PS_SCD)adS. algaG8 (SA_SCD)aeeea2002; Iea2004), beeeaa

 Fig. 1 a SCDa e caale e e be eac
 c e a de

 a e GSL
 d ed
 e ed. b T e e e e a e

 HPLC c
 a a
 e a a
 e d
 c SCDa e ac

 e ab e ce (dotted line) a d
 e e e ce (solid line)
 SA_SCD.

 T e eac
 4 e a de a ed
 OPA a d de e ce d a
 a

e de ce .PS_SCD c e ca a a abe; e e, d4c e e ba ed e e e a-*Pseudomonas* .TK4 ce a e bee e e d e e e ed. B c a ,SA_SCD ca be eade e e ed *Escherichia coli*, c e e d e c a c a a a d e e e e d e e e ed *4 a e e* (F4 4 a e a 2002). H e e, e ab 4 e e a c e e SA_SCD ce d c ac a bee c a ac eed, a d a a , e e c ac a bee 4d ed. A e e e e c a ac e a sA_SCD ce d c ac a bee c a ac eed, a d a a , e e c a c a bee 4d ed. A e e e c a ac e a e e e eded de be a 4 ed e e a c e GSL .

I 4d, e dec be ede e e a, ac ca, a d ec e HPLC-ba ed e d a a SCDa e. We e 4 e e e a a de e e e ec ce a d e c e e SA_SCD a d c a e e e ec e ca a a ab ePS_SCD. T e e 4 4 e a SA_SCD a 4 e e e e PS_SCD e e a e ec, a a a 4 ab e b ca a a 4 a GSL.

Materials and methods

Ce ca ade e

Te d ee 4 c a ed A a P a L d (A aba e, USA), e ce b e a ce a de (Gb4Ce), c a 4 c a ed Wa P4 e C e ca I d4 e (O a a, Ja a) a d GM1a, c a 4 c a ed Q 4 P a ace4 ca C ., L d. (J a, C a). O a a de de (OPA) a 4 c a ed S a-A d c (S. L 4, USA). L -GM1a a da da d PS_SCD e e 4 c a ed Ta a a B ec C ., L d. (Da a, C a). T e -GM1a, -GM3, -4 a de, -Gb4Ce, a d ω - d ed a ac d e e ed 4 ab, a d e d be 4b ed e e e e e ba ed Wae (M d, USA). HPLC e e e 4 c a ed A e C ., L d. (S a a, C a). A e e a e e e e 4 a a abe.

P e e e a d 4 ca SA_SCD de e 4 a

Te e e e c d e a $4 e SA_SCD$ e, c ac 38-e d 4e N-e a e c e a e 4e c e a dc e 277-e d 4e C-e a e 4e c e a b e e d e e e d, a c d - ed *E. coli* a d e ed (Ge c C a , Na , C a). Te e e e 4e c e a 4bc ed ET23b ec (N a e , Mad , USA) 4e NdeI/XhoI e c e a d a a ed

HPLC-ba ed a a SCDa e-ca a ed d

I a adada a, e d cac SCDa e a ea 4 ed 4 GM1a a 4b a e. T e eac 4 e c a ed 15 GM1a a d a a e a 4 ee e 30 μL 25 M d 4 ace a e b4 e (H 6.0) 0.1 % T X-100. F c4ba a 37 C 5 , e eac a ed b ea ab ae ba 5 . <mark>A a 4 (10 μL) eac 4 a e</mark> ae 4, ed 20 μL OPA eae (7.5 M), ad c4baed a 30 C 5 e de a a A e ce 4 a a 13,000 , e 4 e a a a a e edaa a a a daa 4 (10 µL) a eced a e e e a e HPLC c 🐴 (Z ba SB-C18, 4.6 ID, 150 , 5-µ a c e e, A e Tec e, Sa a Caa, USA) 🧍 a a_4 - a e (A e 1260 ALS), e a /H₂O (70:30, *v*/*v*) a e be ae a a ae 1.0 L/ . T e OPA-de a ed data a de ec ed 4 a 4 e ce ce de ec (A e 1260 FLD, $E_x=$ 340 , $E_m = 455$).

HPLC-ba ed a a SCDa e-ca a ed e

I a a da d a a , e _ e c ac _ SCDa e a ea 4 ed 4 -GM1a (d18:1) a d ea c ac d a e 4b a e . T e eac 4 e, c a a a a e a 4 SCDa e, 15 -GM1a (d18:1), a d 15 ea c ac d, a c4ba ed 30 μL 25 M T -HC b4 e (H 7.5) c a 0.1 % T X-100 a d 10 % d e 4 de (DMSO) a 37 C 10 . Reac a e a ed b ea ab ae ba 5, ad e GM1a (d18:1/18:0) a ea 4 ed b e e a HPLC 4 a e e e a e c 4 (Z ba Ec e $P \notin C18, 4.6$ ID, 100 , 3.5- μ a ce e, A e Tec e, Sa a Caa, USA). T e b e a e c a ed ace e a d a e (80:20, v/v), 4 0.03 % e a e, H ad 4 ed 7.5 4 c ac d. GM1a (d18:1/18:0) a e 4 ed ec 4 a a a e 1.0 L/ a d de ec ed

a a a e e 195 4 a a ab e a e e de ec (A e 1260 VWD).

Ge e a c a ac e a SCDa e

T e e ec H e ac e SA_SCD e e ea 4 ed ac e H a e 4.5 10.0 4 a de-a e H b4 e c a HEPES, TAPS, CAPS, MES, a d ace c ac d, eac a 40 M.

T e e e c e a e ac e SA_SCD e e a a ed e e e c e 5 M e a c a (FeC $_2$, C C $_2$, N C $_2$, C $_4$ C $_2$, M C $_2$, Z C $_2$, C aC $_2$, a d M C $_2$) EDTA.

Tee ec a c e e e cac SA_SCD e e ea 4 ed e e e ce a c e (DMSO a d d e e a e (DME)) a d e e c ce a- (ν/ν) .

T e e ec de e SA_SCD e c ac e e ea 4 ed b e a da d e d e ce a T X-100, d 4 de c a e (DOC) a4 de c a e (TDC) e e 4 ed a d e e c ce a (v/v). T e e ec T X-100 SA_SCD d c ac e e ea-

4 ed b e a da d e d e ce a T X-100 a 4 ed a d e e c ce a (v/v) e GM1ac ce a ed e a a e a 0.1, 0.5 1.0 M.

I a e eac 4 e ab e, 15 e e a 4 el d cac a a , a d 30 a 4 ed e cac a a . T e ac a ed e a e e a a a 4 e eac e e e, e ce e e e c e a c e ac a a de a e e c e a added.

S4b ae ec c e SCDae

Те d cac e SCDa e a a d d e e d c ead 4 (F . 2), e e ea 4 ed 15 SA SCD 35 PS SCD b e a da d . Te Ab ae ec c ad c ead a a a e e e edb e ec c d cac . e cac e SCDa e a d -GSL c d e e d c ead A e e de e ed а 4 15 -GSL a d 30 ea c ac d 30 L 25 M HEPES b4 e (H 7.0) c a 0.1 % Т X-100 a d 10 % DMSO. Reac e e ed a 12 30 SA_SCD. T e e c ec -37 ad d c ead 4 a e e e ed b с ed (%), ca c4 a ed a : (ea a ea a GSL- ea a ea e a -GSL) 100/ ea a ead a -GSL. T e HPLC de ec -GSL ea OPA de a a a a a -GM1a ae have be a ea e_a /H₂O, a ad-lacc d be a grade -GSL. e co 4

Te a acd ec c e SCDa e e e c e c e a acd. Te

Kecaa. SCDae

F e e c a a d c ac , GM1a (0.02– 2.0 M) a c4ba ed 15 SA SCD 35 PS SCD 2 $30 \,\mu\text{L}$ 25 M d 4 ace a e b 4 e (H 6.0) 0.1 % T X-100 4 de a da d c d . Kecaa e ed 🛔 -GM1a (d18:1) a d ea c ac d a 4b a e e e e ce 30 SA SCD 3 70 PS SCD 20 30 μL 25 MT -HC b4 e (H7.5) c a 0.1% T X-100 a d 10 % DMSO 4 de a da d c d . Kecaaee eacadee ed A c ce a be ee 0.02 a d 2.0 M a a ed -GM1a (d18:1) c ce a (1 M). K e c a a e e -GM1a (d18:1), e e de e e d 4 c ce a beee 0.06 a d 1.0 M a a ed ea c ac d c ce a (1 M). T e a a e e $K_{\rm M}$ a d $k_{\rm ca}$ e e b a ed b ee e e a da a e M c ae -Me e e c de 4 O 8.0.

N4c e de e 4e ce acce 4 be

N4c e de e 4e ce da a SA_SCD de e 4 a a bee de ed e Ge Ba da aba e 4 de acce 4 be KM986461.

Results

De e e HPLC a a e d c a d e c ac e SCDa e

T eac e SCDa ea e ca de ed 4 TLCba ed e d b 4 ad ca abeed 4b ae (K a e a 2001; M 4 a e e a 1998). A 4 e e, 4c a a a e d c4 e e ce e abeed ea e a e ead a a abea d e 4 e e ca ac e a d e. T e e e, HPLC-ba ed e d e e de eed ea 4 e e e d ca d e ca c e SCDa e, e e ce (F . 1b, c). T e e e d a ed a a d ec e a a SCDa e 4 e 4 e ad ac e 4b ae.

T e SCDa e-ca aeddGSLe e a e aeeae,cca be deaedOPA a4aed ba4e ce ce de ecHPLC (F1b). Cdeedeaeed ade cbedFS1. T

e d c a be ea a a 4 4b ae, c 4d ce a de (Ce), 4c ce a de (G cCe), a ac ce a de (Ga Ce), 4 a de, ac ce a de (LacCe), GM3, GM1a, Gb4Ce, a d e (SM) (F S2). T e e d a d ec aa d e-a a ea e a da d de a (RSD) a e a 5% (Tab e S1). T e HPLC-ba ed e d ee e de a e ab ea a e d cac SCDa e.

Te e c ac SCDa e ca be d ec de e eadebd a a 195 ed b 4 a UV de ec e HPLC. Tace e de a a addeec e d4c, ee ab ed a d ed ee e e e - a e HPLC e d e edb Ga e a. (1984): ead Ga 'LC b RP-8 c 4 ee edaeee-aeZbaEceP4C18c-HPLC a a . W e 4 -GM1a (d18:1) a d 4 ea c ac d a 4b a e , e d4c GM1a (d18:1/18:0) c 4 d be c ea a e a a ed e 4b a e a d b4 e c e 4 a be aec a ace ead, ae (80:20, v/v) 0.03 % e a e, H 7.5 (F . 1c). TeRSD a-a a a de e-a a de cac a a e e a e a 5 % (Tab e S2), d ca a a e e da a d ec .

Bace_ac e.e SA_SCD

SA_SCD, a 4 d a a ebace 4 , S. alga G8, a d e e a c edb F4 4 a e a. (2002). I e Fig. 3 C a ace a e ec b a SA_SCD. a E ec H. b E ec e a ca a d EDTA. c E ec a c SA_SCD. d E ec T X-100 e d c ac SA_SCD a d e e GM1a c ce a e E ec de e e e c ac c SA_SCD. Values e e e e a SD (n=3)

be abe 4 a cc - e, add 5 % DME DMSO ed e ac . F4 e cea eDMEccea e e bed ecac (F . 3c). H e e, cce a DMSO, 4 a a 4 a 10 %, e a ced e cac -, e ecce a bed.

Tee ec a 4 de e e e d cad e c eac SA_SCD e e a e a ed. I c de e e , DOC, a d TDC c e e b ed d c ac (da a). I e e , e - c de ee T X-100 e a ced d , b4 e e ec de e ded GM1a c ce a (F . 3d). F GM1a c ce a (0.1 M), e 4 c ce a T

X-100 (0.1 %, w/v), b4 e GM1a c ce a (1.0 M) e 4 e a c e d e c ce a T X-100 (0.5 %, w/v) e be e a ce e S e c ac ceeded e c e e a b e ce de e e Add T X-100, DOC, TDC b ed e e c eac (F . 3e): e cc4 ed e DOC TDC c ce a eac ed 1 %, e 60 % e ac a b e ed 1 % T X-100.

Head 4 ec c e SA_SCD a d PS_SCD

GM1a Te 4b ae ec c. SCDae c 4c a T ac ca a ca , b4 e a a a abe

b SA_SCD a d PS_SCD. T e e e, e 4b a e ead 4 ec c e SA_SCD a d PS_SCD e e Aded dea aea eacca.F d , SA_SCD ee ed GSL , a e 4 a e e (GM3, GM1a, a d Gb4Ce) c a ed ead 4 (SM a d 4 a de) e e a e e4-a 4 a e e (G cCe, Ga Ce, a d LacCe) (Tab e 1). PS SCD a e e ed GSL e a e 4 a e e, b4 dd e e e e ce ad GSL caed ead 4 (e.., SM). M e e, PS_SCD d ed a de a e a GM1a a d GM3, e ea SA_SCD d ed GM1a ad GM3 a.e. I.ee., a a ae. a SA_SCD d ed GSL **4**c a e a d d PS_SCD, d ca ea e e c e c . F e a e, ec c ac e SA_SCD GM3, GM1a, a d SM e e 25-, 39-, a d 69- d e , e ec e , a e PS_SCD.

T e 4b a e ead 4 ec c e e SCDa e e e c eac e e a e a ed (Tab e 1).

	Sr. c. re	1 o-GM1a (d18:1)			
En r		Reac ion Yield $(\%)^a$			
		SA_SCD		PS_SCD	
11		84.4	0.4	35.4	4.6
12		73.4	0.5	21.7	6.3
13		82.3	0.2	15.5	4.2
14		63.0	3.2	57.5	0.9
15		70.0	1.8	74.7	4.7
16		85.5	0.6	65.2	4.2
17		83.0	0.9	71.3	0.3
18		85.0	0.8	75.7	2.3
19		83.8	0.9	75.8	1.7
20		85.8	0.5	81.3	1.5
21		64.3	5.8	56.2	2.9
22		4.0	0.8	23.3	6.1

ee PS SCD 4 2.0 M.

ea 4 e c a a e e e ac 4b a e, e SA_SCD e a c ac d a d -GM1a (d18:1), e e 2.7-

e a 0.3 M, eea e e a c ce a ec-4b ae a ed a a b a ee PS_SCD 4 2.0 M. 1.0 M c ce a . T e a 4e e ed Tabe 4 a e

a d 5.7- d e a e PS_SCD, e e k_{ca} a 4e e e 106- a d 131- d e a PS_SCD. T 4, e k_{ca}/K_M SA_SCD e a c a c d a d -GM1a (d18:1) e e 38- a d 23- d e, e e c e , a e PS_SCD.

Discussion

SCDa e a c de ab e e a e e GSL, e ecal e bea 4 a 4 a a acd, a d 4 a a b ca a e e ab GSL e ea c . Se e a e e de ce a e ece 💷 🛔 e ed la le a 🗉 ac d e e GSL c 4 d ca a ec e b ca 4 c . F4c -GM1a bea 4 a 4 a ed a ac d b e e a 4 a e 4 e a-de ed HL-60 ce, e ea a e a 4c -GM1a bea a ea c ac d d e (X4 e a . 2009). GM1a, a e c e a e e e e , _ e ec e _ e cae _ e a a e bae _ e trans-G ad eed a cec44 ec4ed a 4 a 4 a ed acca e (Caeea. 2012). LIGA-20, a e e c GM1a de a e ded a ... ac d e..., ed ea e e cac a d a e, e de e e a GM1a e e d e4-de e e a e ce e 4 a (L a e a 1992; K a a e a . 1994; M cc e 2005; Bac e a . 2002). Ne e d e ac e GSL ae ee e a edee e d 🛔 ca e ea e cace ad e4 de e e a e d ea e.

 e d4e ed ae ca a e a e ea c ac d e ea ed GM1ab d -, 4 4 e eac e 4 b 4 a d e d c d ec . T be a a e a e e a a -GSL. I e e , Z $^{2+}$ a d C 4^{2+} b ed b e d c a d e c ac e ca , c d e e e d ae ca . T e b e ce c a bee b e ed e e a c a e a e a a 4e, eac deceae beca4 e e e ec4 e a e e e e ce e. We e a e a e a a 4e, cea e c ce a T X-100 decea e e 4b a e ce a a e ce e 4 ace, c a decea e e e a c ac T d a e e a c e a a -GSL : b de e a a a T X-100/GSL , e a a ab e c ce a GSL ca be ed, e eb ca e d ce ce c.

- EaBR, DeEA (1976) A aa e C (Bacilluscereus) aca dedce ed a daA cBc eB176:604-609
- F4 4 a M, S4e N, M, 4 a e S, Sa a 4c K, K a K, O N, Ic e S, O A, I M (2002) M ec4 a c a d c a ace a d ce a de N-deac a e a a e bace 4, Shewanella alga G8. J B C e 277:17300–17307
- Ge e FH, D e FC, C e a WP (1991) Rec e 4 c a e a - c d 4 — a a d ed, aceb - c ed a GM-1 a de. N E J Med 324:1829–1838
- G e-O. M, G -R FX, H4be R, A FX (1997) I b cab e da e A b e ce c: a a e 4c 4 a de a b X-a c a a FEBS Le 400:336–340
- Ha S (1998) Cace-a caed c da e : e 4c4e, a a , ad4c . Ce T 4e O a 161:79– 90
- H aba a Y, K 4 a M, Ma 4 M, Ya a K, Kad a S, T c 4 a T (1988) A e c d d ee, c d ce a de deac a e, c cea e e a e be ee e a acd a d e ba e c d J B c e 103:1-4
- H a d DR, Ha4 a AC, J4e D, Ma e BW (1995) S 4c 4 a a a c 4b 4 eac e e e . P e Sc 4:1955–1965
- I M, K4 a T, K a K (1995) A e e e a cea e e *N*-ac a e cea de a 4 c d a e a e d4ce e .JB C e 270: 24370–24374
- I M, K4 a T, K a K, S4e N, M 4 a e S, F4 a M, O N, I4 H, Ka I (2004) S d ce a de N-deac a e, e d d4c d a d d de a e, a d d ce a de N-deac a e e e. US Pae 6821761:B2
- Kae
 M, Yaada K, Ma
 T, Iaa
 M, H & C R (2007)

 Ned
 e cac
 a
 de
 ec
 de a d
 e

 Ac & e-ac
 ea
 . C e P a
 B4
 55:462–463

 Kaa
 A, Z
 c I, P
 A, A
 D, C a E, G4 d
 A
- K a a A, Z c I, P A, A D, C a E, G_4^4 d A (1994) LIGA20, a de a e a de GM1, e a a e c c a b ed $_4^4$ ce a c e a d a c a ed c de c P c Na Acad Sc U S A 91:6303-6307
- K.aK,K4 aT,I M (2001) C aace a eee be a4e e eac caa edb d ce a de N-deac a e—a e e e e d eac E4 JB c e 268:592–602
- K b HC, F MG, S a e KB (2001) C c c e : d e e c e ca 4 c a e d eac . A e C e I Ed E 40:2004-2021
- K4c ař L, R J, A a B, Le ed J, H D, K ec L, B Z, Led J (2010) Se e C17:0 4 a de a d 4c ce a de 4 b ed d ce a de N-deac a e a ca a a ca a ec e-Ra d C 4 Ma S ec 24:2393–2399
- K4 aT, I4H, Sa M, I M, Ka I(2000) E ace e d c ac dcea de N-deac ae ea 4e 4 a cb a c e JL d Re 41:846-851
- La e KS, A4 d DS (1989) Cab... e da e A: ec a c b. .B c e ... 28:9620–9625
- La e KS, A4 d DS (1991) C a ace a a b e a b de ca b e da e A. B c e 30:2613–2618
- La. M, La a A, Ma e H (1992) Ga de de a e LIGA20 ed4ce NMDA e4 c. e aa a ba . Ne4 Re 3: 919-921
- Mae H, Faa M, Vc S, G4d A, C aE (1990) G 4 a aed4ced e4 a dea a c4 4 e ce ebe a a 4 e

ce: ec b ecdea e ed e 4 d.JPa ac E Te 252:419-427

- M. 4 a e S, K. a K, O N, I M (1997) [¹⁴C]Ce a de e b d ce a de N-Deac a e: e a a ce a da e acde ec . A a B c e 247:52–57
- M 4a = S, K = a K, Na a a a T, I M (1998) E a c e¹⁴C- c d b e e d eacd ce a de N-deac a e: de ece d ce a da eac a ea e. J B c e 123:859-863
- Na a a T, Ta M, K a K, I M (1999) Pe a a 4 e ce ceabe ed GM1 a d e b e e e e d eac d ce a de N-Deac a e a 4b a e a a d-de ad e e a d de ec db d e JB c e 126:604-611
- Na a a a T, M A, Ta M, S4e N, K H, I M (2005) C18:3-GM1a d4ce a Ne4 2ace : e a c e de a ac c a c d.JL d Re 46: 1103-1112
- O J, Ma 4 G (2000) A a 4e c d a d ce d 4 abe c 4 a d-a d a -4 c a ed 4 ace. Te a ed 56:9975–9984
- R c JR, W e SG (2012) A c e e a c a e $e e_4^4 e c a a de LLG-3 4 a$ e ee ed a d e ed a e. A e C e I Ed E51:8640–8643
- R c JR, C4 a A-M, G be M, W e SG (2011) G c d e e ac b a ec ba c a e a e a d a e d c c e a d a e c a e. C e C 4 47:10806-10808
- R be: MF, Dee RA, De EA (1977) D4a e e ac a d a e A2 ca a. P c Na Acad Sc U S A 74:1950–1954
- R_4^4 č ć J, Ma ć V (2004) Ce eb de *Candida lipolytica* ea . A M c b B ec 64:416-420
- Sc c C, B e E, Sc a e S (2013) B ec ca d4c d ba e a d e a ca . A M c b B ec 97:4301–4308
- S4 de R, Abe AW, Vae PR (1978) E ac e e ad d ae Bacillus cereus. S4b aed 4 de e - d ce e ad b a e e ce. JB C e 253:4175-4179
- Va a YD, Sc d RR (2000) C e . . . c d ca b d a e ec $_4^4$ e b ca ca ce. C e S c Re 29: 201–216
- Wa a a a M, M 4 a Y, O a K, Sa a K, M 4c M (1995) Meacaace a *N*-Ac -D- 4 a a e A d d a e *Pseudomonas* . S a 5 - . B c B ec B c e 59: 1489–1492
- We
 e
 e
 T, a
 de
 Be
 RJBHN, B
 RG, a
 de
 Ma e
 GA,

 O
 e
 e
 HS, Ae
 JMFG (2009) G
 C
 d
 a 4 e,

 4
 c
 , a d
 a
 ac
 ca
 d4 a
 A
 e
 C
 e
 I
 Ed

 E
 48:8848–8869
 HJ18(6)]TJ-3.922.3999996.4
 .999991(1992)]TJ60000038(
- W HJ18(6)]TJ-3.922.3999996.4 999991(1992)]TJ60000038(0))-255.89999 e e999878()16.79.1999998(a)17.3