

Stereospecificity of Enoylreductase Domains from Modular Polyketide Synthases

Lu un Zhang,^{†,§} Junjie Ji,^{‡,§} Meijuan Yuan,[†] Yuan uan Feng,[†] Lei Wang,[†] Zixin Deng,[†] Linquan Bai,[†] and Jianting Zheng^{*,†}

[†] tat a cati, ca ta a, a a. t., , a, a a ct., , a, a a ct., a, a 200240,, , a

[‡]ala a cali a constituti con a constituti a constituti

Supporting Information

Ý

ABSTRACT: la (). а t a a at а ť ťť KIK SIR fi. at ı a ť. aℓ a а) . а. trans-2-1 at 1. K ţ ť. fiℓ Ķ ať att ť ť. a ı ť ť. £ 2Ra 2S ... ť, £ . 2S ı a ţ ť aℓ a a 1 at . ≰ a∉ ať a . 🖞 a a . . . ať а ať aı

ť ať fiaℓ ıa, 1 at Ľ t.at ť - · 1 1 a, • ť. ť. а ť а . ť ť. ť а., . a 4

at a ť ¥ a a a . . . at t alal а а. a tt а • 1. a ۰¥ ť. а ¥ а а) a t at . l а а а а att ť а a а), a . а í a а а a١ а · a t at · 1 111 а а a⊮ ať ť а а , ata a ťa ťa). fi a a⊮ а ťať ¥ ¥. a а ť а а ¥ ť. а ť 1 at а, ť ať a ı a

att a а (a t at а Ľ ťa . а 1. ť а ť ť a, fiℓ ť. • ať а (2S)ť ala l а Ķ а aťa ť ať ať ¥ att, 2 fi. at ť ∙at⁄a

at .5,6 (2R)-2ť -3- ℓa ť١ fiaℓ it a ť , ti ť ť. ĸ a ata , a t ť ť. Ľ fi . at 2 ť 3 ť. a $\stackrel{7}{.}$ In vivo a **í** al ť, t at ť а ff. ť. ť 1 at а a t i Ľ ť١ ť ať ť i fiℓ ĸ • ١ť а a, K a ı a K. tia a a a а ťať а a t ať ∉ a ata t at t ť,ť . a in vitro.¹⁰ ť t at . ť. fiℓ ať fi. at ťť а ť ť. ť. t at ¥ al a l in vitro.¹³ ť. а ¥ ť. fiℓ fat, ť а

...a £ -£...a £ £ (. £.a£ a££a £a (), ...a £ £ ...a ()-...£

Received: 16, 207

Accepted: . . a 13, 20

Published: . . a 13, 20

 $k_{a} = k_{a} + k_{a$

KK KKa ť a a u at Ła, jał a. . . ¥ ť a 🖞 • a ¹⁵ , al a a Sť fi., ť t at a (a), **۱** ı, a kı Ķ , . • . . a а (Rfi... ıa , а a a a a) , at t ť a a t a ť. ť 1 Li $(\cdot, 4)$ t' t'ť fi . 🕯 at " , a , a ť SℓR. ia, i , 16 k. k. i k a k. k. fi ţ а • , , a a a lat l 2 a a, , t at K. K. a Kaka ť , a., ť

k k, e ek in vitro, a a ke ak ke fi k a e k ... a . ke a k ak, a k a a ., a . l. a . l. l l l a . a a ala l . l l l . fi . . l . l . a . l . . l, l . a . . a . l . . a . . a a l . . . in vitro.¹⁶ l al l in vitro ť. fit∕ ť Escherichia coli 21 (3). а . , a ťť а a., -Ľ. tt a . ť 2 a . 4 (54%),4 (56%). Ł t a ca t t $trans-\alpha,\beta$ - at at t. .

. K. Ki Kia, α-a a ť ť ť alla. k at trans-(5S)-, t-2-2 k k, 2 k . Matai a α - t, ia, (. 2). (,) at a (,) a at (,) a a ki k iak ain i ∙ a Ł a fi t' = 2 - t' + 1 - a t' t'a $t' = -m/z = 5.7 \$ $at' = (16 \ 30 \ 2 \ aO_5) = 5.7 \ at' + a^+).$ 4 = 2, 4 = 4, 4, 4 = 4, 4, 4, 4 = 4, 4, 4, 4, a 🖌 ∉ a (,)a, (,),,, k, iaki. i. k k i. ak kk ť ť. • a a ť t. . . t a at a . . kak . a - . . Kak k . . tata a a i i att ť. .¹ , Ľ

ťa, ť k k · ť ť . , i a a , i a 🌿 at -1 2-Ľ . K. (; /) . t . t. l a l l in vitro a l / a ĸ ıa, ť. fiℓ ť a , t, t, ²⁰ ta tia ť . t. -2a. , , t t . . £ ť **ť**a а . .

Figure 2. - ala (\ldots, ℓ) trans-2- ℓ (ℓ) - a $\ell \ell$ (\cdot) ℓ ℓ (\cdot) ℓ ℓ (\cdot) (\cdot)

ť ťa ť "	· · ·	a β- a	120 a a Ka K K	, a a La L
ťa.a.,	• •	a 🏼 🖌	t at	kja k
fi at	a 🖌	₁ at	, a 2	- L. L. a.
• (. 3).	ťa	, ť ťi	, a

ACS Chemical Biology

Figure 4.
 ℓ ℓ 2.() ℓ ℓ 2

a ℓ ... (241, 422, a..., 444) a... 444) a...

2. a ℓ ... a ℓ

2. ... a ℓ ... a ℓ

2. ... a ℓ ... a ℓ ...

2. ... 4... ... a ... ℓ

2. ... a a ... a ... ℓ

2. ... a a ... a

4. ... a ... a

2. a <td

k fikka. K. - . . Kakk ka. k fit ... a ... k k fit ... a ... k k ... k ... k ... k k ... k ... k ... k k ... k ... k ... k ... k k ... k , ť a 2- K. K. a. a-ala li, li ki... i... kaa ... jia . a

METHODS

k it i at i a ta i i k , la l.

ASSOCIATED CONTENT

S Supporting Information

Ķ 7. 00,2 2.

it ta, it fi., a. la. k k ak a a a fi ak k k ak k k k trans-2-k k - a k k k k k k ak Kita. trans2- ½ (½ - , , a ; / a. ()

AUTHOR INFORMATION

Corresponding Author

* - a, k, @k....

ORCID 💿

Jianting Zheng: 0000-0003-1250-3556

Author Contributions

Notes

akı a kfiaakık.

ACKNOWLEDGMENTS

, a. . e. at t at a at a at a at a 317 00(a), t at a a a a • t (7 3 • • a , 2013 7 34002), t tat a cali al a cil (a la la a cali al a cil (a la la a , 1526), la la a la a , k la cil , a la a l ttt a at a at a a t ttt a at a at a a t tat a at a uttua, atta, att

REFERENCES

Opin. Struct. Biol. 41, 10–🏼 .

(3) a, ..., a. ..., . (2011) ... k. K. K. ... a. K. Ła. Molecules 16, 60 2–6115.

2 0.

7374.

- 🖌 🤘 a . Chem. Biol. 13, **2**7 **2** 5.

- Sci. 8, 1116–1126. (20) a , ., a ,
- ACS Chem. Biol. 10, 107 -1025.
- (21) $a_{1}, \ldots, a_{n}, \ldots,$

- Proc. Natl. Acad. Sci. U. S. A. 113, 10316–10321.

a -.440 -