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Vascular endothelial cells (ECs) sense and respond to hemody-
namic forces such as pulsatile shear stress (PS) and oscillatory
shear stress (OS). Among the metabolic pathways, glycolysis is
differentially regulated by atheroprone OS and atheroprotective
PS. Studying the molecular mechanisms by which PS suppresses
glycolytic flux at the epigenetic, transcriptomic, and kinomic levels,
we have demonstrated that glucokinase regulatory protein (GCKR)
was markedly induced by PS in vitro and in vivo, although PS
down-regulates other glycolysis enzymes such as hexokinase
(HK1). Using next-generation sequencing data, we identified the
binding of PS-induced Krüppel-like factor 4 (KLF4), which functions
as a pioneer transcription factor, binding to the GCKR promoter to
change the chromatin structure for transactivation of GCKR. At the
posttranslational level, PS-activated AMP-activated protein kinase
(AMPK) phosphorylates GCKR at Ser-481, thereby enhancing the
interaction between GCKR and HK1 in ECs. In vivo, the level of
phosphorylated GCKR Ser-481 and the interaction between GCKR
and HK1 were increased in the thoracic aorta of wild-type
AMPKα2+/+ mice in comparison with littermates with EC ablation
of AMPKα2 (AMPKα2−/−). In addition, the level of GCKR was ele-
vated in the aortas of mice with a high level of voluntary wheel
running. The underlying mechanisms for the PS induction of GCKR
involve regulation at the epigenetic level by KLF4 and at the post-
translational level by AMPK.
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The endothelium lines the luminal surface of the arterial wall
and is in direct contact with blood flow. The pulsatile shear

stress (PS) at straight parts of arteries maintains endothelial
homeostasis, whereas oscillatory shear stress (OS) at bifurcations
and curvatures impairs endothelial function. Such OS-induced
endothelial cell (EC) dysfunction is characterized by enhanced
glycolysis, inflammation, proliferation, and production of reac-
tive oxygen species (ROS) (1–5). Collectively, these EC pheno-
typic changes cause atherosclerosis (6).
As the sole pathway for glucose catabolism, glycolysis is a main

energy source for the endothelium (7–9). Increased glycolysis in
ECs meets the demand of glucose consumption required for EC
migration and proliferation (3, 10). However, exaggerated gly-
colysis in endothelium is associated with disease states such as
tumor angiogenesis, diabetic retinopathy, and atherosclerosis (8,
9). Mounting evidence indicates that shear stress regulates gly-
colysis in ECs as a function of the flow patterns. Doddaballapur
et al. showed that the PS-induced Kru ̈ppel-like factor 2 (KLF2)
reduces metabolic activity in ECs by repressing the expression of
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), a key regulator of glycolysis (1). Analyzing RNA-
sequencing (RNA-seq) data from ECs exposed to OS, Wu et al.
concluded that OS increases endothelial glycolysis via stabilization
of ROS-mediated hypoxia-inducible factor 1α (HIF-1α) (11). Us-
ing bulk assays, Feng et al. reported a similar result, namely, OS
increased EC proliferation and inflammation via HIF-1α induction

of glycolysis enzymes (12). While these reports pointed out the
increase in glycolysis under OS, a systemic study of the regulatory
mechanisms of glycolysis in the endothelium in response to distinct
flow patterns remains elusive.
Kru ̈ppel-like factor 4 (KLF4) and AMP-activated protein ki-

nase (AMPK) are two principal molecules involved in the mecha-
notransduction mechanism in ECs. KLF4 is one of the Yamanaka
factors that are necessary for embryonic cell pluripotency (13, 14).
In ECs, KLF4 is a lineage-dependent transcription factor (TF)
essential for endothelial lineage and a PS-induced signal-dependent
TF (14). Under PS, KLF4 transcriptionally up-regulates many
atheroprotective genes such as endothelial nitric oxide synthase
(eNOS), thrombomodulin, and inositol 1,4,5-trisphosphate re-
ceptor, type 3 (ITPR3) (15, 16). Functioning as a pioneer TF,
KLF4 binds to the promoter region of these PS-induced genes to
interact with the basal transcriptional machinery and initiate epi-
genetic remodeling (16). As a metabolic gauge, AMPK globally
regulates cellular metabolism by increasing catabolic pathways and
decreasing anabolic pathways. AMPK activation decreases energy-
consuming glycolysis while promoting mitochondrial oxidative
metabolism to restore energy homeostasis (17). Upon activation,
AMPK phosphorylates a number of target proteins in ECs that
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are strengthened by the in vivo findings that phosphorylation of
S481 GCKR was impaired in the aortas of AMPKα2−/− mice and
that this impairment was accompanied by the enhanced HK1 ac-
tivity. Because both AMPKα2−/− and GCKR−/− mice exhibit im-
paired glucose metabolism (32, 33), AMPK phosphorylation of
GCKR Ser-481 may be functional in issue types other than en-
dothelium, such as liver or skeletal muscle, which deserves future
study. Additionally, the Ser-481 phosphorylation of GCKR may
synergize with other posttranslational modifications of GCKR,
including the acetylation or ubiquitination of Lys-5 (34). One in-
triguing question is whether Ser-481 phosphorylation affects the
structure of the HK binding domain and therefore facilitates
GCKR-HK1 binding. As such, we performed an analysis on the
location of S481 in relation to the HK binding domain on GCKR.
As shown in SI Appendix, Fig. S3, the GCKR-HK binding occurs
via a β-sheet structure on GCKR that results in multiple non-
covalent interactions with HK. Apparently, S481 is located adja-
cent to the β-sheet. Although our results indicate that AMPKα2 is
activated by PS to inhibit glycolysis, the regulation of AMPK in the
vasculature may depend on the specific AMPK isoform and the
time durations of activation (35).
The temporal dynamics of epigenetic, transcriptional, and

posttranslational regulations are synergistically involved in the
transactivation of metabolically related genes. We found that
AMPK phosphorylation of GCKR occurred within 10 min after
the onset of PS. However, the transcriptional induction of
GCKR did not reach a steady state until 12 h after PS onset
(Fig. 2A and B). Blood flow varies dynamically in the arterial
tree; the spatiotemporal regulation of GCKR in the vascular
endothelium in vivo is tightly controlled at the systems level. A

comprehensive and coordinated regulation of GCKR is indis-
pensable for regulating the energy status in the endothelium in
the context of glycolysis.
The clinical relationship between enhanced glycolysis and

vascular disease is well established. At the cellular level, increased
glycolytic activity leads to enhanced oxidative stress, inflammation,
and endothelial cell proliferation, all associated with EC dysfunc-
tion and the onset of many cardiovascular diseases (1–5, 10, 36, 37).
To this end, voluntary wheel running of mice would maintain
AMPK at a more activated state within the vascular tree and hence
improve EC function (28). Metabolically, this beneficial effect is
mediated at least in part by the synergistic regulation of GCKR
by KLF4 and AMPK, leading to attenuated glycolysis (Fig. 5).
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Ultimately, such reduction in EC glycolysis by physiological activi-
ties may be important for the maintenance of vascular health.

Materials and Methods
Experimental methods are described in detail in SI Appendix, SI Materials and
Methods. Cells for all experiments were cultured according to standard
procedures and kept in a standard cell culture incubator held at 37 °C and
5% CO2. Quantification of nucleic acids by qPCR was conducted with a Bio-
Rad CFX96 real-time detection system using SYBR green. All primers used for
ChIP or standard PCR are listed in SI Appendix, Table S1. Bioinformatic

analyses were conducted in R programming language with support from
Bioconductor or Comprehensive R Archive Network (CRAN) libraries.

Data Availability.All study data are included in the article and/or SI Appendix.
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