

Phosphorothioated DNA Is Shielded from Oxidative Damage

Tianning Pu,^a Jingdan Liang,^a Zhiling Mei,^b Yan Yang,^a Jialiang Wang,^a Wei Zhang,^a Wei-Jun Liang,^c Xiufen Zhou,^a Zixin Deng,^a Zhijun Wang^a

^aState Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China ^bInstitute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China ^cDepartment of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom

ABSTRACT A		. A, .		-
• • • • • • •	•	A	(), .	
· · · · · · · · · · · · · · · · · · ·		Salmonella	enterica	-
· · · · · · · · · · · · · · · · · · ·			(_{2 2})	
- Escherichia	coli –	• • 1	. (·
S. enterica.				
A	-	. А.		
V 10.58 ± 0.90 $^{-1}$	2 2	2	, K _{0.5} , 31.0	3 .
2.419 ± 0.39		•		
(-)				
	,		Decudor	-
fluorescens 0-1.		•	- Pseudon	nonas
	• • •	· · ·		-
IMPORTANCE A	•	i i -	•	
		γ		,
A		A , , , , ,	A	-
A	1		2 2	
		. ,		
- E. coli		2 2		,
• • • • • • • • • • • • • • • • • • •	Α.			-
• • • • • • • • • • • • •	. ,		2 2	
KEYWORDS A A	• · · ·	. / 2 2	J	

Applied and Environmental

D^A, ..., A. ..., A. ..., A. ... , ..., A. ..., A. ..., A. ... A. ..., A. ... Citation Pu T, Liang J, Mei Z, Yang Y, Wang J, Zhang W, Liang W-J, Zhou X, Deng Z, Wang Z. 2019. Phosphorothioated DNA is shielded from oxidative damage. Appl Environ Microbiol 85:e00104-19. https://doi.org/10.1128/AEM .00104-19.

Editor M. Julia Pettinari, University of Buenos Aires

Copyright © 2019 American Society for Microbiology. All Rights Reserved. Address correspondence to Zixin Deng, zxdeng@sjtu.edu.cn, or Zhijun Wang, wangzhijun@sjtu.edu.cn.

T.P. and J.L. contributed equally to this work.

Received 13 January 2019 Accepted 5 February 2019

Accepted manuscript posted online 8 February 2019 Published 4 12 1

A . A		(1). A ,
. A		(2 4).
Α	· · · ·	(5, 6). Clostridium
difficile,		60% (7).
Leptospira . A		A 50%
Mycobacterium abscessus	(9, 10).	
ана алана ж ана	· · · · · · · · · · · · · · · · · · ·	
· ·		
	-	(5, 6), -
	. Escherichia coli	7A Saimonella enterica
87,		. 10" . ()
(J).	(5) ^	, , , 10-
- A	(3). (11)	
		(/
5′ 3′) E. coli	Streptomyces lividans	AA / /
, (12).		
• • • • •		Α
. ,	Α	in vitro (13, 14).
· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
(14 16),		· · · ·
· · · ·		a an an an an
· · · · · · · · · · · · · · · · · · ·	E. coli S. enterica	· · · ·
	(16). A	t
i i i i i i i i i i i i i i i i i i i		· · · · · · · · · · · · · · · · · · ·
(16)	· •	
E. coli –	(_{2 2})
	(17 10)	- · · · · · · · · · -
	(17 19).	1
Α	() A.
.	(-).	

A 22.

RESULTS

.

Fenton reacti	on of PT DNA.		2 2			• •
· · ·	2 2 (1) 2+	(100 μ)		,	
· · · · ↑	. () .					
	•			. 1		
	Α (• · ·			.)
	A (<i>m/z</i> 581)	-	• • •	A (<i>m/z</i>	565) (13)	(15).
	•	1	A		(13),	•
1 2 2 Preferential c	100 μ. 2, omplexation of DndCDE	to PT DNA	۱.			
. Α.						
			÷ .	E. coli	_	
(_{2 2} -)	2	² 1655	(17). A	. (1	7)

in vivo 2 2⁻ , dndCDE S. enterica 87 E. coli. ↓

 FIG 1
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <

FIG 2 A. (A) A А -Α, , 200 - A (_). (/) (...). 4% 20%. . 1, 2 μ 2, (1 μ) 1 20 3.96% 0.5× .() А Α. Α 3000 **3.38** μ. 0.4 μ. Α. A (). А , A Α(Α(.) A) Α (...). А А (...). 10-20-А . < 0.01, Р t .() . A 2 2 Α, Α(.) Α (...). A.

(. . 1A).

FIG 4 10/12 . 2 -2 4 -4 77 13 3 -4 130 μ. 2 3 -4 4 -4 . (A) () . (... ..), 2, (...), : 13 (___). (__) 2. (.), 2 (...), 2, (...). () _ 2 2. (.) 0, 0.5, 1, 5, 130 μ. 10, , 50 22 ,

2 2 1 . A , 1). (. . . 1 , . A 2 2 , 35.5 . , V *K*_{0.5} 1.56 -1.

Fe-S cluster and	H ₂ O ₂ decompositi	on.		- (-)
				(22).
		2, 3, 4		2
4 , ,		/		. 2 -2,
3 -4, 4 -4.	· · · · · · · · · · · · · · · · · · ·		2+ /	^{з+} . In vivo,
		2 -2 4 -4		
(22),				-
		()		77 13,
2 -2	4 -4 (27).	4		
77, ,	<i>g</i>	(4A,	.),	13 g
2.005		4 -4	(. 4A,	.) (27).
	4 -4	1	-	
	(28, 29).		4 -4 ³⁺	4 -4 ²⁺ ,
	4 -4 2+	4 -4 + (29) 🔒		
		**	4	-4 3+

 FIG 5
 A
 $_2$ <

		, <u>g</u>	2.035	2.001,
(4A,).			
. <i>g</i>	2.032 2.00	1 (. 4A,),		
4 -4 +	(27, 30).			
4		1	g	77,
•• ()	12		

	(2.029), 13, , 2.002 (4 ,). A			g
	• • •	(4	· · · /)	
•				-	
3	-4 +	(29)		3 -4 ^o .	
				-	
		2 2/			. 4
().		• · · ·	. 4	-4 +
		· · · · · ·	2 2	• • • •	
	30			. (10, .)(4,	,
).		³⁺ , g	4.3,		

30				
9.5 (.	4,). A	 2 -2 +	30
(. 4 ,).			

DndCDE H_2O_2 decomposition activity does not depend on ferric ion.

	_			-		-				
	2 2'	3+	•			•				3+
		(31).	A		2 2	2.			_	
				(32,	33).	,	Α			
· .				A- ()/	22			(34).	4	
		А	2	2						
		1		•		. 5A.		2 2		
							Α.		1	
		128 μ _.	Α,					•		
									2 2	
		1						•		
		·	•							•
		. 5				10 μ.			, .	
	· •				1.			100 μ.		· /
2 2										· ,

А

- ² ² ³⁺

Conserved cysteine residues in DndC participate in H₂O₂ decomposition.

2	2 · · · ·					•		
		2 2		•		,		in
silico							146	262
273 28	1 <i>terica</i> 30 283)					(59,	39	202
1	,				(2)		
		,				2).		,
				•				
22.	•							
	. ()							-
	dndC			,				
. 6.				39A,	262A	,	273A .	
				400	42	20 ,		
	(,)					(.	. 6).
+				dndC .				
	30	2 2		· /				
(3)	,	•		•	2 2		
(.	. 5).							
-	(35, 36).				146	280		283
	-						-	
	2 2 ·				. A		262	273
•					,			
2 2					39			
	2 2						-	
				-		-		
H_2O_2 dec	composition acti	vity of D	ondCDE f	rom Pseu	domoi	nas fluo	rescens	Pt0-1.
	an	iu	0_1 (, Pseudo	nnonas	iluores	ens 0	- I _ E.
	. (40)		o)				-
	400	420	(4).		0	_	
	100			,,				. 11

A 2019 85 8 00104-19

. . . . 7

DISCUSSION

E. coli S. enterica,					1,40	00
					3	3.4
· · · · · · · ·						
Α.	· · ·		,			
······	(16)					
•			Salmo	nolla ont	orica	
· · · · · · ·		, (37, 38)	Sunno		encu,	-
• • • • •						
···· · · · · · · · · · · · · · · · · ·		· 1		(39)	1	
		Α.			• •	-
(1)		• •		· •. •·		
(1). , (6	40)					
,	40),	dndCDE	•		· /	
(17).					. A	
Α				•		
· · · · · · · · · · · · · · · · · · ·						
• • •						
· · · · · · · ·	1				1 ·	
• • • • • • • •					Deaud	0
nas fluorascans 0-1				40	rseuu	01110-
	enterica		(. 4A	(-
	entenca,)	22		(
(41).	-	1				
S. enterica	. /					,

-

TABLE 1

Strain or plasmid	Description	source
Salmonella enterica	87 dndBCDE AA /	60
Escherichia coli 10	 mcrA (mrr-hsdRMS-mcrBC), 	
Escherichia coli 21(3)	E. coli 3, λ 7 Α ;	· · · · ·
· · · ·		
-28 (+)	322 , ,	
-15	322 , A	
	-28, A	52
	Α	
	,	52
	, dndD,	52
	,	52
	-28 , . A	52
	-15 , iscS - , A	
39A	39A ,	
146A	146A ,	
262A	262A ,	
273A	273A ,	
280A	280A ,	
283A	283A ,	

	(6).	, ,				-
		· · · •			1,400	
• • •	· 1		 	. ,		
10-						2 2

MATERIALS AND METHODS

Ba	cterial s	trains, J	plasmid	ls, and cu	Iture conditions.			
		1,					(52).	 , dndC
39A,	146A,	262A,	273A,	280A,	283A			
(2)						19- 5'	
					E. coli,	3- dndC		
		dndC .				5′		
		(., ., A,	A) 4		

TABLE 2 A a

Oligonucleotide function and name	Sequence (5′→3′)
39A-	
39A-A	A AAA AA AAA
146A-	
146A-A	A AAAA A
262A-	A A _ A AAA A
262A-A	A A A A A A A A A A A A A A A A A A A
273A-	AA A
273A-A	A <u>A</u> A A AAA
280A-	A A A A AAA A
280A-A	A A AAA AA AAA
283A-	A A A AAA A AAA A
283A-A	A A A A AAA A A
• • • • • • · · ·	
24 A/ ()	AA
24 A/ (_)	AAA AA AA A

24	A/ (.)	AAA	Α Α	AA A
24	sA/s ()		sAA	
24	sA/ s () AAA	A A <u>s</u>	AA A

a de la construcción de la construc	A	А
. (A , , , A)	A	· · · ·
,) , , , , , , , , , , , ,		
, dndC	. (כ	5).
A (A) E. coli (A A. A).		3)/
	,5 /	
, 10 /	. 1.	
50μ $^{-1}$ 37 250 .		•
() . 0.1,	6 000	X a
20 ,	80 .	~ y
Protein expression and purification. (i) N-terminal His-tagged cysteine des	ulfurase, Iso	cS.
. (52) 1		50.
. (20 , 8.0, 150 , 5%) 50 (. , , A) 100 , . 6.4)-,	
10. 2- 4- (× a 20	,
1 (A) (× g 20.	, A,
A),	0 _. ., 2(40, . (20, .
, 8.0, 150 , 500 , 5%), 2.5. -10 ((20	-
8.0, 150 , 5%)	(20)	. ,
(54). (ii) C-terminal His-tagged Dnd protein complex DndCDE or DndCDE _{Pro} .		
(₀))	5%
) 50	,	570
· · · · · · · · · · · · · · · · · · ·	. (.	;
	1	(20)
- , 8.0, 150 , 5%).	. 5.	.20, .
(20 , 8.0, 500 , 5%), A A	()
	2.	
(λ ₂₈₀). (3.).	4	200
0.5 8,000 × 4 2 (A . ,	(20	,
8.0, 150 , 5%) 6 4 ,		
(iii) Gradient native gel electrophoresis detection of both native and cross-lin	nked DndCl	DE.
· · · · · · · · · · · · · · · · · · ·		()
4% 20%	.	
	5	7.6
), 100 μ 10% (/) (A), 10 μ		
(49.5%, 3%; , , ,), 5. 3× (75		
57.6), 3 , 75 μ 10% (/) A , 7.5 μ , 20%	918 µ	•
).	
., .)	J,	. ,
(iv) <i>In vitro</i> anaerobic enzymatic formation of active Fe-S cluster Dnd DndCDE-FeS.	protein co	mplex,
). (. , , , A)	(23).	, ,
α, α' 2 ,	 	-10

х, -, 1 -10 30 , 2 3.5 () ,

А				

		900 μ		0.5-		8,	000 imes g
4 2 (A .	;. ,).	(:	20 μ.) 0 5	, . 	20 μ.
(20 ,	8.0, 150	, 5%)	4/2/	1.	• •	
	4		,			15	,000 $ imes g$
10 ,					-10		(
.) , A, A	.) 4.,		0.5-		(• •	-20 -10;
UV-Vis and EF	R analysis of D	ndCDE and	DndCDE-Fe	≥S.			•
	2.			Δ)	•	5	
200-μ	2, 130μ.,2	20 ,	•/ /	- , , , , , , , , , , , , , , , , , , ,		(20,	• • • •
8.0, 150	,5%)	96-	(3	3599;	. , ,	A)	
	λ_{290} λ_{700} .						
							-
•	()						
	130 µ.		()	20, .	,	8.0, 150	, 5%
)	• • •					(2, .)	
(2, .)	•)				10/12	
() .	.)		910		
		Α		().		
		:		, 9.387	;		, 5
;	, ² . , †;.	· •	, 100)	. 13.	77	
				_	1.20	о <i>щ</i> .	-
(130 μ.)		12μ 5	2	60 μ	2.5	, 8.0.
(200 μ)					-		
0.5, , 1, , 2,	.,5, 10)			· · · /		
)	A 1100	. (250 . /.	4.6	; 5-µ	· · · ·	; ,	· · · · · · · · · · · · · · · · · · ·
• •		0	- 104		. (A.	0.1%
	30 .	0.	1%	13%)	35.5 ,	13% 30%
20	., 1	1%	10, .				λ _{254.4} .
			10	⁻¹ ,		30	/. ² , .
581 (A)	325 ,		3,100	• • •	m/z 59	/ (A), 565	(A),
EMSAs. A					. (.	A).	2;
		(. , .)			5′ 6-	
(A,) /	50 4	. A/	. •	A		100 5	500-μ
(150	- 80,50	00 μ.	240).	300	, 100 μ S	×
	100	10	210, ,		500 p	•	
20-μ .	Α	2 μ	. 5′	A		. (4	μ.), 2 μ
4μ (4μ.) 801 1	,	0.1 -	-1	, 2 μ	 А	(100. 50%	· · - ,
10 μ 6.67 j	и.	, 0.1					
		40, ,	10 µ		A	3.969	% (49.5%
3%,			. , ,	.)	0.5×	(4	4.5 ,
44.5	, I A).	3000		10	00 1 (•	A)
Measurement	of DndCDE and	d DndCDE-l	FeS H,O, d	lecompo	sition act	ivities. (i) (,. Colorimetric
assay. ₂₂		· · ·	100-µ			20	,
8.0, 150	, 125	, 5%	(0.25	40.	2 2 ().	
20 -	· · ·	1.67μ.	(0.25	')		25	
1,000-	(20,	,	8.0, 150		, 5%)	
10 .						200 μ	
· · · · ·	(. A	;) (18, 5	57),
•			50, ,				

.

λ ₅₉₅	²⁺ , 10 μ.	100 μ. ₂		. 2 2.
(ii) Bubble test.	(26)			
-100			a se	
	, 125	1. , 5%	10 μ. , 1%	, 3 _{2 2} , -100.
· 22			. (26)	
;				· . · · · ·
(iii) UV absorption.	2	•	-	
· · · · 96	λ ₂₄₀ (2 2	(.) 	2 . λ ₂₄) (58)
. 22.	0, 15, 20, 24, 3 100-µ	0, 40, 48, 60, 80, 9)	6, 120, 160, 200, 20 - ,	240 , 8.0, 150
, 125 , 5%	, 1.67 μ	A		
· · · · 2 2 ·		-C	н н	Z ,
 I		2 2' -	· . · · · 1	1.

^{2 2} , , , A, A). A, 1 μ, , 2 μ, 4 μ, 8 μ, 16 μ, 32 μ, 64 μ, 128 μ. A ^{2 2}

(iv) O_2 liberation rate measurement (p O_2 oxygen electrode).

SUPPLEMENTAL MATERIAL

.00104-19.

SUPPLEMENTAL FILE 1, , 0.2 .

ACKNOWLEDGMENTS

★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 ★
 (973
 (973
 (1470830, 21661140002, 91753123).

REFERENCES

- 1. , .1982. -A 257:6595 6599.
- 2. . 2000. : : A A 10:117 121. :// . . /10.1089/ .1.2000.10.117.

- A 5. . 2011. А А А 108:2963 2968. :// /10.1073/ .1017261108. . 2005. A 6. , . . A, 1. . , ,... , 57:1428 1438. :// ... /10.1111/.1365-2958.2005.04764. .
- 1. 7. A Α, 2005. A Clostridium difficile. 54:155 157. :// ... /10 8. 2009. . , A Leptospira . Α 49:289 291. :// .. /10.1111/.1472-765 .2009.02641. .

- Improvacientum abscessus
 A

 42:5582
 5587.

 .42.12.5582-5587.2004.

 10.
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 ,

 .
 < . /10.1099/ .0.070318-0.
- Α, .
- 5:3951. :// . /

- 12.
 'n'
 'n'
 'n'
 'n'
 'n'
 'n'

 .1093/
 /
 176.
 'n'
 A,
 1988.
 'n'

 13.
 'n'
 'n'
 A,
 1988.
 'n'

 13.
 'n'
 'n'
 A,
 1988.
 'n'

 13.
 'n'
 'n'
 A,
 16:4341
 4352.

 ://
 ./10.1093/
 /16.10.4341.
 A
 16:888
 894.
 ://

 14.
 .
 A,
 1995.
 A
 16:888
 894.
 ://

- 15.
 . 2012.
 . A
 . A
 . A

 16.
 . A
 . 40:9115 9124.
 :// .. /10.1093/ / 650.

 16.
 . A
 . A
 . A

 2017.
 . A
 . A

 13:888
 894.
 :// .. /10.1038/

 17.
 . A
 . A

230 237.	:// . /10.1038/	.3779.	35:
50 ,		. 2015.	
10.1093/ , 51.	/ 143.	43:2927 2945.	.// /