

Phosphorothioated DNA Is Shielded from Oxidative Damage

Tianning Pu,^a Jingdan Liang,^a Zhiling Mei,^b Yan Yang,^a Jialiang Wang,^a Wei Zhang,^a Wei-Jun Liang,^c Xiufen Zhou,^a Zixin Deng,^a Zhijun Wang^a

a State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China b Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China c Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom

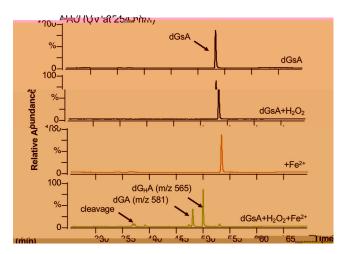
KEYWORDS A _ _ _ , A _ _ _ , 2 _ _ _ . .

Citation Pu T, Liang J, Mei Z, Yang Y, Wang J, Zhang W, Liang W-J, Zhou X, Deng Z, Wang Z. 2019. Phosphorothioated DNA is shielded from oxidative damage. Appl Environ Microbiol 85:e00104-19. https://doi.org/10.1128/AEM .00104-19.

Editor M. Julia Pettinari, University of Buenos Aires

Copyright © 2019 American Society for Microbiology. All Rights Reserved. Address correspondence to Zixin Deng,

Address correspondence to Zixin Deng zxdeng@sjtu.edu.cn, or Zhijun Wang, wangzhijun@sjtu.edu.cn.


T.P. and J.L. contributed equally to this work.

Received 13 January 2019 Accepted 5 February 2019

Accepted manuscript posted online 8 February 2019

Published 4 v | 2 19

RESULTS

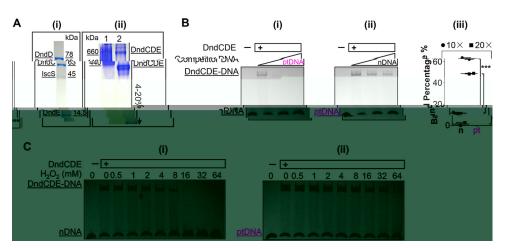
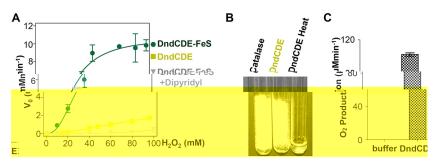
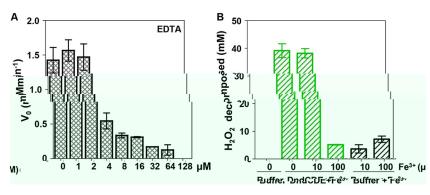


FIG 2 A. (A) A 200 (_). .()_A 0.5× 3.96%_ $0.4~\mu_{-}$ $3.38~\mu_{-}$ _3000 A A ((- _ 20-< 0.01, . () 2 2 Α (_). A, A ()





FIG 3 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$

DndCDE-FeS actively decomposes H₂O₂. _ - 1 11 (20, 21). _ , (22). 1 -(23), - 1 1 , (_ . 3A), α,α' (24, 25), 1 V , $, K_{0.5},$ 31.03 __ (_ . 3A) 2 2 -_{4 2} K_{0.5} 58.59 ___. 2.93 (_ . 3A). (26). -1 1 _ 1

H₂O₂ decomposition requires an intact DndCDE.

Fe-S cluster and H₂O₂ decomposition. (22)._ 2 _ 2 -2, 3+. In vivo, 2 -2_ (22),1) 77 131 -4_ (27). (_ . 4A, 2.005 (_ . 4A, _) (27). (28, 29). 4 -4 _ + (29) 4 -4_3+ 1 1 1

2.035 2.001, _____ . 4A, (27, 30). 1 1 1), 1 1 131, (11 2.029 2.002 (_ . 4 , .). A (29) (10 __) (_ . 4 4.3, 30 (-.4, -...)

DndCDE H_2O_2 decomposition activity does not depend on ferric ion.

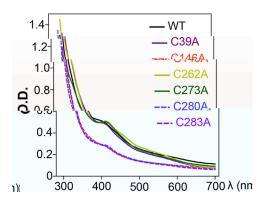


FIG 6 (λ_{400}) (λ_{400})

7 2 -------

Conserved cysteine residues in DndC participate in $\rm H_2O_2$ decomposition.

 $\mathrm{H_2O_2}$ decomposition activity of DndCDE from Pseudomonas fluorescens Pf0-1.

A 2019 _ 85 - 8 00104-19

DISCUSSION

(37, 38) (37, 38) (39) (39) (39) (41). (41). S. enterica

TABLE 1

Strain or plasmid	Description	Reference or source
1.		
Salmonella enterica 87	dndBCDE, AA /,	60
Escherichia coli 10	mcrA (mrr-hsdRMS-mcrBC),	
Escherichia coli _21(3)	E. coli 7 A _ - ;	1 1-
-28 (+)	322	-
-15	322 , , , A_	l-
		52
	Α,	
	, dndE,	52
	, dndD,	52
	, dndC,	52
	28', A , 1 !	52
-	15 ,iscS , A	- 1
39A	39A , 1	-
146A	146A ,11	-
262A	262A	-
273A	273A	-
280A	280A	-
283A	283A ,11	-

MATERIALS AND METHODS

TABLE 2 ___ A L__ a

Oligonucleotide function and name	Sequence (5′→3′)	
39A- 39A-A 146A- 146A-A 262A- 262A-A 273A- 273A- 280A- 280A- 280A-A 283A-	, AA A	
24, A/, () 24, A/, () 24, sA/, s () 24, sA/, s ()	AAA, ', A, A, S, AA, A, , AAA, ', A, A, S, AA, A, ,	

. (53). 10 __ , dndC __ ! __ E. coli __ _21(3)/ ____ (10_ / _ _ 50 μ _ ⁻¹ | | _ _ _ 600 (₆₀₀) 0.6. A _ 1

Protein expression and purification. (i) N-terminal His-tagged cysteine desulfurase, IscS. (52)

8.0, 150 ___ , 5%_) | ___ __ (54).

(ii) C-terminal His-tagged Dnd protein complex DndCDE or DndCDE_{Pfo}. (0) - - 5. (20 __ -_ 25 _ 8.0, 150 ___ 1 (20 ___ 8.0, 25 __ , 5%) 1 8.0, 150 ___ , 5%_). (20 __ , 8.0, 500 ___ , 5%_ 1 1 A I 200 10/30

(iii) Gradient native gel electrophoresis detection of both native and cross-linked DndCDE. 4% 20%_ | _ | 4% 20%. | 20% | 2

(iv) In vitro anaerobic enzymatic formation of active Fe-S cluster Dnd protein complex, DndCDE-FeS. 20 μ_ 30 ___

(54).

Measurement of DndCDE and DndCDE-FeS H_2O_2 decomposition activities. (i) Colorimetric assay. $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$

 λ_{595} . λ_{595} .

- -- 22-1 1-1- I -100 , 8.0, 150 __ , 125 __ , 5%_ . (26)

(iii) UV absorption. ____ 96- . - . 2___ (_ 0, 15, 20, 24, 30, 40, 48, 60, 80, 96, 120, 160, 200, 240 ___,

(100-μ _ _) _ 20 __ - , 8.0, 150 ___,

125 ___, 5% __, 1.67 μ __ . A 1 1 1 . . , A, A). Α, 1 μ_, 2 μ_, 4 μ_, 8 μ_, 16 μ_, 32 μ_, 64 μ_, 128 μ_ Α

(iv) O₂ liberation rate measurement (pO₂ oxygen electrode). 1.67 μ_ 1 - 1

SUPPLEMENTAL MATERIAL

_ | _ | .// _ _ /10.1128/A _ .00104-19.

SUPPLEMENTAL FILE 1, 0.2 - ...

ACKNOWLEDGMENTS

-- 1 _ (973 _ | _ , 2015 554203) _ (31470830, 21661140002, 91753123).

REFERENCES

- Clostridium difficile. _ _ _ 54:155 157. :// , _ /10 .1099/ _ _.0.45808-0.
- :// _, _ /10.1111/ .1472-765 .2009.02641. .

- . _ /10.1099/__ .0.070318-0.
- 10.1038/ __ 4951.
- 12. _l - , , , . 2007. A _ _ l -.1093/ + /_ _176.

- . _ /10.1002/ .11501601149.

 15. _ , _ ! _ 7 , , , | _ , |