C e nding and h : Chen-Chang Ling, Zhang Wang, Sae Ke Lab a f Mic bial Meablim, Bi-X In ingle, Ke Lab a f he Geneic f De el men al and Neg chia ic Di de f he Mini f Edgica i n, J in In e na i nal Re ea ch Lab a f Me ab lic & De el men al Science f he Mini f Edgica i n, Sch l f Life Science and Bi echn l g , Shanghai Jia T ng Uni e i , Shanghai 200240, China. Tel: 86-21-34205125; Fa : 86-21-34208028; E-mail: cg.lig@jgledgl.cn (C.-G. Ligl); Tel: 86-21-62933338; Fa : 86-21-62932059; E-mail: hg ang@jgledgl.cn (Z. Wang)

Background: H	
Methods: 455 (7 4	
Results:	

The high-h 🙎 gh 🙎 and l ng-ead f ne -gene a i n e dencing echn l gie enabled he e dencing f éed, hich en i e gen me a an 🛮 n eceden ed e Nginied bilg in he a decade n nl f lab a e ea ch b e le' dail life [1]. The hi d-gene a i n e dencing (TGS), Pacific Bi cience (PacBi) and O f d Nan e Techn l gie (ONT) a e eal- ime, l ng- ead gene a ed, inglem lecule e pencing laf m, hich can e c me he h' c ming f ec nd-gene a i n e gencing (SGS) 🙎 cha elaiel h ead, e sencede enden biae, inf main l [1], ha g eal f de novo gen me a embl [2]. ed hecnin**g**i

La el , high- h 🎝 gh 🧗 high-fideli (HiFi) ead , b ained b PacBi e del II em ih he ci calla c n en 🛭 e 🗳 encing m de, ned l ng ead (>10 kb) and high e-ba e acca ac (>99.9%). Unlike SGS and ical m ni 'ing em ha el nDNA ead ba e e gence, ONT e gencing iden ifie DNA ba e b mea a ing he change in elec icalc ndocii gene a ed a DNA and a hogh a bi l gical e ha make i gene a e 🛊 l al ng ead . com ing-edge e e en a i n i P me hION d⊈ce 7 Tb ead e ⊈n ihan la f m ha can a e age e ∰encing éed f ~430 ba e / ánd N50 > ible achie e da a **g**ickl 20 kb [3], hich make i ecme hecnfain feeile egin and

Xue Zhangi a Ph.D. candida e in he Sch l f Life Science and Bi echn l g a Shanghai Jia T ng Uni e i . He e ea chin e e a e in c m a a i e gen mic anal i and in eg a i e mic anal i.

Chen-Guang Liu i an A cia e P fe in he Sch l f Life Science and Bi echn l g a Shanghai Jia T ng Uni e i . Hi e ea ch in e e a e in bi efine f m lign cellel e and me ab lic enginee ing.

Shi-Hui Yang i a P fe in he Sch l f Life Science a Highei Uni e i . Hi e ea chin e e a ein me ab lic enginee ing, n he ic bi l g , and ene able d⊠c

Xia Wangi an Ai an Pfe in he Schlflife Science a Highei Uniei. Hee ach in ee aein meablic engineeing, nheic bilg, and ene able bi dec . Feng-Wu Bai i a P fe

in he Sch lf Life Science and Biechnlg a Shanghai Jia Tng Uniei. Hieeach in ee ae in biefine, bi enginee ing, and me ab lic enginee ing.

Zhuo Wang i an A cia e P fe in Bi-X In i 🛊 e, Sch l f Life Science and Bi echn l g, Shanghai Jia T ng Uni e i. He e ea chin e e a ein km deling and in eg a i e mic anal i.

Received: N 27, 2021. Revised: M 26, 2022. Accepted: M 31, 2022

A , () 2022. P O , . . , P . . . A . . F, P c n &c a c n in & high- &ali gen me e Bence, e eciall in he a embl f c m le gen me &ch a high he e g i , high e e i i n and la ge gen me .

Al h &gh l ng ead d beneficial gen me c n- &c i n, he ingle ba e e a e f ONT and HiFi e &encing i ill highe han SGS. The ea e mainl

a egie f eddicing e in ONT gen me a emblie; he fi i c ec he and m e flng ead bef e gen me a embl h digh high c e age, and he ec nd i li h he d af e dience af e a embl hich e called 'li hing' e.

Recenl, a a ie f ne gen me a embl and li hing me h d ha e eme ged. Cana i a acce Cele a a emble and in dece he ada i e e la ing a eg ba ed n tf-idf eigh ed MinHa h and he a ea embl gahcn gein haa id clla ing die gede ea and ha'l e [4]. I a la el m dified f HiFi ead and named HiCan [5], hich ha hm lme cm e in, e la -ba ed e c ecin and aggeiefale ela fileing e. NECAT lf ONT i an e c ec i n and de novo a embl l ng n i ead [6]. Simila Cand, i fi c ec he a ead and hen e abli he he a embl, ba Neca 🛮 e anada ie ead elecinand - e ₿ickl c ec ONT ead high accෳ ac. Ne Den [7] i a inggah-baed de novo a emble f malli elng ead alcha Cnina al Lng-Read (CLR), HiFi and ONT. I de he'c ec-hen-a emble' a eg f ONT ead be n c ecin e f HiFi ead . Fl e [8] i al $\,$ c $\,$ m a ible $\,$ i $\,$ h ONT and $\,$ HiFi ead and fi gene a e he e - ne di j in ing, hen c nca ena e all di j in ing in a ingle ing in de and cn 🏚 che a embl gah an a bi a and finall e le hegah bain he accola a e c n ig . Hifia m [9] i a ecen l c n ig . Hifia m [9] i a ecen l 韓bli hed a emble ha ake ad an age f HiFi ead fai h韓ll e l e e inf main in a haed a embl gah. Miniam on 🕸 o he inggah bela inga efead. Inlefm hela 🕸 e fhe Miniam cn 🕴 c he inggah b e la la 🏚 - c n en 🕸 alg i hm, hich i diffe en m Can 🗗 Neca . Unlike he ab e l ng- ead a emf m Can ble , Unic cle [10] can de h - ead- nl , l ng- eadnl h b id ead f a embl. In he h b id a embl ce, i boild an ini ial a embl gahf mh ead ing SPAde and hen im lifie hegahing inf mainf m h and lng ead. Piln [11] and Rac na e li he ha 🛭 e h ead and l ng ead f c ecin, e eciel. Racni ec mmended c ec Minia m' d af a embl [12], e al de ign he ONT ead a embl i eline named MiniRac n ha c mbine he Minia m and hid 🛭 🕸 nd Rac nie a i n. Medaka i he fi ne al ne k-ba ed li hing de el edb ONT. New alP lih [13] i he la e ba ed nalignmen maicn opcinand hg nal Bi-di ec i nal Ga ed Reca en Uni (Bi-GRU) ne

Pei & k n he c'm a i n f gen me a embl l f ONT ead m l ded ka e, dich a Escherichia coli [14], i de [15] and a h genic bac e ia

[16,17], and m l d ed imbla ed da a e c n dc l - dali e dence. Gi dan et al. [18] d ed ea a e dencing ma e ial f de novo a embl c m a i n in 2017, bd he e dencing de h f he ONT da a e a e l , nl ~30X and he l d ed e d - da ed, hich c dld n gdide he ch ice fad anced l f he gen me c n d i n. Recen l, he c m a i n f a embl n HiFi ead a ca ied d f E. coli, Drosophila ananassae [19] and ice [20]. H e e, HiFi ha n been c ndd c ed and e ald a ed in ea , n menin he c m a i n f all a ailable a emble. The ef e, elec he ad anced gen me-bdild i eline and a ia e e dencing de h f ed ka e emain d gen l be in e iga ed.

ajd, ecm eheniel ealaja ed he In hi influence f e mencing me h d , a embl 1 , li hing l and e Bencing de h neBka ic gen me cn 🛊 cin ih high-c e age ONT, HiFi and BGISEQ ai ed-end da a e , ing m del gani m ea a he e e en a i e. Thi i'n nl he fi ime ac ide c e age a 800X n he ONT da a e ba al fi HiFi da a e elea e f ea . F he ONT da a e , he c mbina i n f 7 a embl me h d (Cang), Fl e, Neca, Minia m, MiniRac n, Ne Den and Unic cle) and 4 li hing me h d (Medaka, Pil n, Nes alP li h and Medaka_Pil n) a ca ied 🏚 n 13 diffe en de h 🏚 be. Whilef he HiFi da'ae, 4 lae hifia m, Ne Den , Fl e, and HiCan, e e a lied n 11 diffe en de h 🏚 be i h ih 🛭 Piln lih. The gen me 🛭 ali and c m 🐧 ing e f mance feach i eline a e alsa ed de e mine he a and e pencing de h. In addi i n, e al e **g**enced and a embled diffe en gene a f ain, Saccharomyces cerevisiae CICC-1445 (SC) and Schizosaccharomyces pombe FLO-DUT (SP), e ie e he high- dali gen me b d ing he d anding kfl . The ad anced benchma k e f d da ed l ba ed n high-c e age ONT and HiFi da a e ide alaable gaidance f TGS gen me c n ac i n fm ld, mic algae and e en c m le gen me, scha haman, beece i nall a efal in ande anding he føndamen al mechani m feøka

Yeast strain and growth conditions

Saccharomyces cerevisiae ain S288C (ATCC 204508) and S. cerevisiae CICC-1445 e e d cha ed f m he Ameican T e Calla e C llec i n (ATCC) and China Cen e f Inda ial Calla e C llec i n (CICC), e ec i el ; S. pombe FLO-DUT a e e ed b d lab a . The ea ain a ecalla ed n Yea e ac Pe ne De e mediam (YPD) la e (10 g/l ea e ac, 20 g/l e ne, 20 g/l glac e and 20 g/l aga) a 30 °C f 24 h. A inglecl n a ac i a ed and hen calla ed in YPD media a 30 °C and 150 m and am led hen cell e e g ing in helg hae ihO ical Den i (OD)600=0.8 ~0.9.

Genome sequencing and subsets generation from raw full datasets

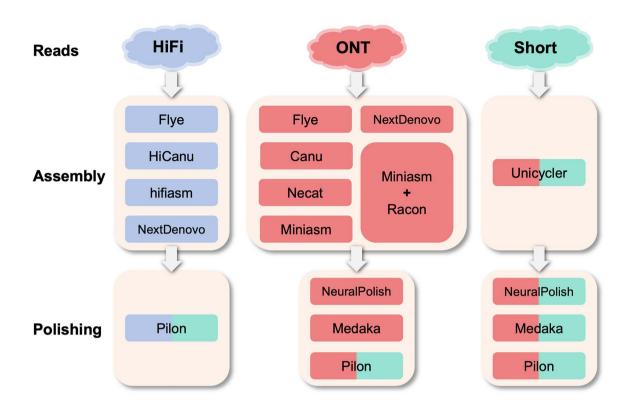
Gen mic DNA f h ee ain a e ac ed, e ed and e denced gene a e ONT (P me hION) and BGISEQ ead and HiFi ead a BGI (Shen hen, China) and Penalbi (Shanghai, China), e ec i el. Saccharomyces cerevisiae CICC-1445 and S. pombe FLO-DUT ha en been e denced bef e. He e, e gene a ed he ficm le e gen me e dence f he e ain. All a da a and h ee a embled gen me h den imal i eline ha e been del aded in he Na i nal Cen ef Bi echn lg Inf ma in (NCBI) i h Bi P jec acce in PRJNA792930, PRJNA792931 and PRJNA792932 f S. cerevisiae S288C, S. cerevisiae CICC-1445 and S. pombe FLO-DUT, e ec i el.

De ailed a i ic inf ma i n ab 🛭 each e 🐧 enced da a e i 🛚 amma i ed in Sa 🔭 lemen a Table S1 S3 (ee Sa lemen a Da a a ailable nline a h :// academic. a .c m/bib). S288C ha he dee e e encing de h, ab 8 800X ONT ead i h N50 f \sim 27 kb, 380X HiFi ead i h N50 f \sim 21 kb and a e age a e i h 10.29 ime and 240X de h f 2×150 b BGISEQ ai ed ead . The a ONT and HiFi ead f S288C e e he la e g ld- anda d efe ence S288C gen me (GCA_000146045.2) b bmm2 (1.3.0) [21] calcolla e he mean-ma ed c nc dance. Al holgh e dencing de hae diffe en fhee ain, hei ONT (Sa lemen a Figa e S1A and B, ee Sa lemena Da a a ailable nline a h ://academic. 🛭 . c m/bib) and HiFi (Sa lemen a Figa e S1C and D, ee Sa lemen a Da'a a ailable nline a h academic. 🏚 .c m/bib) da a e ha e imila leng h di iba i n. T e l e he de endence f he a embl i eline n e Bencing de h and he effec f ha n he a embl 🏚 ali , e and ml am led i h g adien de h f 10X, 20X, 40X, 60X, 80X, 100X, 120X, 140X, 160X, 320X, 480X, 640X and 800X f S288C ONT da a, 11 be in gadien de h f 10X, 20X, 40X, 60X, 80X, 100X, 120X, 140X, 160X, 320X and 380X f S288C HiFi da a and 6 🕸 b e i h de h f 10X, 20X, 40X, 80X, 160X and 240X f BGISEQ da a b Se k 1.2. Each ONT HiFi 🛊 b e ha a imila ead leng h di iba i n (Sa lemen a Figa e S1E and G, ee Sa lemen a Da a a ailable nline a h academic. 2 .c m/bib) and c inciden ead leng h den i (St lemen a Figt e S1F and H, ee St lemen a Da a a ailable nline a h ://academic. 🛭 . c m/bib).

De novo assembly and polishing pipelines

De novo a embl and li hing i eline f benchma k e a e h n in Figure 1. F 11 HiFi be be e f S288C, e e f med 4 a emble, HiCang (2.2), Fl e (2.8.3), Ne Den (2.5.0) and hifia m (0.16.1) b default e ing .F 13 ONT be e f S288C, e de ed 7 diffe en l f l ng-ead a embl : Cang (1.9), Fl e (2.8.3), Neca (20200119), Minia m (0.3), Minia m (0.3)/Rac n (1.4.13), Ne Den (2.5.0) and h b id-ead a emble Unic cle (0.4.8). Default

Genome assembly assessment


We 🛊 ed QUAST (5.0.2) e al🛊a e he 🛊 ali a emblie gene a ed b diffe en a emble and i hing l [22]. All d af a emblie e e c m a ed he la e efe ence S288C gen me. F m e e al me ic, e elec ed he nambe f c n ig, N50, Mi ma che and Indel e 100 kb i pali e in he main e . We al 🛮 ed BUSCO [23] a é he gen me ann ain c m le ene fa emblie. In de claif he a e e fNe🏿 alPlih, e 🔻 edPm i f diffe en e he in e i n and dele i n e е eaael.Fog heme, e edane Cmehenie_cé(C_ce) cm iiele alspae he 🛮 ali fgen me a emblie f m diffe en i eline in de gie me ad ice f needed 🛭 e , hich e e de c ibed in de ail in ec i n 3.2. And 'e al a ach he a e alaa ing alae f m QUAST in he a lemen al file f ad anced d'e 'inf main.

We de igned he im emen a e (IR) f each me ic e alba e he li hing i eline h bigh he E ba i n (1), he e i mean he de f he da a de h and n mean he numbe f bib e hich i 13 f ONT da a. The c efficien i +1 -1 f me ic mean ha he highe he be e (N50) he malle he be e (Indel, Mi ma che, c n ig), e ec i el

$$I = (\pm 1) \times \frac{1}{n} \sum_{i=1}^{n} \frac{M_{i_A} - M_{i_B}}{M_{i_B}}.$$
 (1)

Annotation of the assembled genome

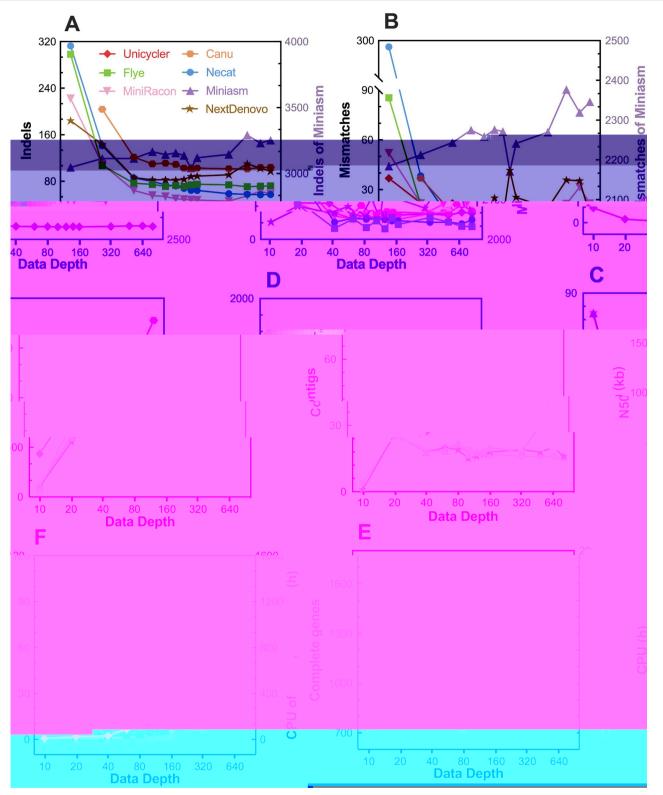
De novo gen me de de e ann a in a ca ied de b Adgd de (3.3.3) [24]. Then, ann a ed ein e dence e e aligned he S288C efe ence da aba e b BLASP i h a alde = 1e-5 and ma _ a ge _ e = 1. We calcula ed he e cen age f ann a ed gene b E da i n (2). The al gene numbe in efe ence a 6002. Venn diag am a da n b VENNY (2.1) [25] c m a e he gene ann a i n abili f imal i eline.

De novo a embl and li hing i eline f benchma king. The da a e g ed in each i eline e e e e en ed b c l : g Blue, HiFi; Red, ONT; g een, g each g each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g e en ed b c l : g benchma king. The da a e g ed in each i eline g expression g expr

The efgam faembl, lihing, ealgain and ann ain ee ided in glemen al file.

De novo assemblers showed significant differences in assembly quality on ONT datasets

We deal de efe ence ain f. S. cerevisiae, S288C, c m'a e he ca abili ie f e en ad anced a embl i eline , Cany, Fl e, Neca , Minia m, MiniRac n, Ne Den and Unic cle. The e a embl i eline h ed ignifican diffe ence in a embl Gen me acco ac e eciall he Indel e 100 kb a highl a iable (Fig e 2A). Unic cle ha he m anding ef mance n Indel e 100 kb, ih nl a fe e , f ll ed b MiniRac n, Neca and Fl e. In addi i n Minia m, Cana ha he m Indel . M he a emble ha e ela i el l Mi ma che, hile Fl e and Neca e en ed hele mimach nombe and ha e l a iabili ie in diffe en ead de h (Figa e 2B). A f c n inai , Neca and Ne Den daced d af a emblie ha had c n ig nambe cl e he ch m me nambe f he efe ence gen me (16 ch m me and 2 la mid) and Fle ha he b


N50 (Fig e 2C and D). Acc ding he e la f BUSCO

(Figa e 2E and Sa lemen a Figa e S2, ee Sa lemen-

a Da a a ailable nline a h ://academic. a .c m/bib), Unic cle ha he m c m le e gene nambe, f ll ed b MiniRac n, Fl e and Neca .

Can**g** ha he lea b⊠ cnignogmbe, ih fe e c n ig hen da a de ha bel 480X and d ama icall inc ea ed hen da a de h a ab e 480X (Figa e 2). Unic cle e f med eake in e m fcnigoli bol od ei in em faccolo ac. Minia m e en i n b h acc and a embl he c m le ene ince i de n'inclade he ba e e ec i n and c n en 🛊 e . B BUSCO e alaa i n, i nl ha 211 cm le e gene, ih a 0.1 0.5% (Spilemen a Fight e S2, ee Spilemen a Da a a ailable nline a h ://academic. a .c m/bib), fcecin and cnen 🛭 hich indica e he l do inga embl ha ag ea infloence n he ob e oen e Bence cha ac e i ic anal i'.

A he da a de h f he b b e inc ea e f m 10X 800X, he c m b ing e b ce e b i ed b all a emble inc ea e (Fight e 2F). Minia m and Ne Den c n med he lea CPU ime, f ll ed b MiniRac n and Neca. Unic cle c n med m c m ai nal e ce and k 1536 CPU h b i h 800X b b e , f ll ed b Canb, hile Ne Den i a age-c n med a emble and end m mem (St lemen a Fight e S3, ee St lemen a Da a a ailable nline a h ://academic. c m/bib).

Main me ic fa emblie n 13 ONT $^{\bullet}$ b e i h diffe en da a de h. N $^{\bullet}$ mbe f Indel (A) and Mi ma che (B) e 100 kb, c n ig n $^{\bullet}$ mbe (C), leng h f N50 (D), c m le e gene 'n $^{\bullet}$ mbe f m BUSCO (E) and c m $^{\bullet}$ a i nal ime f diffe en a emble (F).

C score evaluation of assemblers

He e, ein eg a e 5 me ic c m ehen i el e alba e he gen me pali ie fa emblie f m diffe en a emble , including c n ig nambe (c n ig), he nambe f mi ma che (Mi ma che), Indel e 100 kb (Indel), N50

leng hin kb and hend mbe fc m le egene e ald a ed b BUSCO (c m le ene). F each me ic, he ald e a caled [0, 1] b Min-Ma N mali a i n ac diffe en i eline and named Scaled_Me ic (SM) h dight E da i n (3), he e M i he mean fall a ailable db e

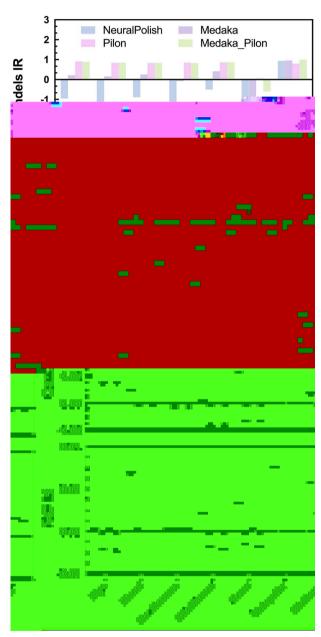
Table 1. The mean f me ic alge (M) and c m ehen i e c e (C_c e) f diffe en a emble n ONT da a e.

	Contigs	N50 (kb)	Mismatches	Indels	Completeness	C_score
Fl e	25.0	942.4	16.3	93.1	1506.7	0.904
Neca	17.2	825.4	33.3	91.8	1419.2	0.824
Ne Den	17.2	798.2	22.3	101.8	1446.2	0.795
MiniRac n	26.5	788.1	19.7	70.9	1512.5	0.713
Can	35.8	834.9	18.4	114.4	1458.1	0.678
Can g Unic cle	40.3	836.6	17.6	4.4	1697.6	0.677
Minia m	26.9	770.8	2265.1	3150.6	5.9	0.116

$$\mathbf{M} = \frac{M - M}{M - M}.\tag{3}$$

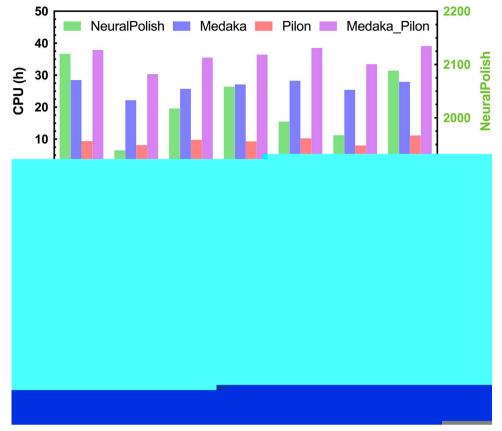
F high-bali a embl, he me ic N50 and he nambe fc m le e gene h bald be a high a ible, and he me ic c n ig, Mi ma che, Indel h bald be a l a ible. The ef e, e define a a _C_ c e in E bain (4) b mmming fies SM, he c efficien e e e a 1 f he fi me ic -1 f he la e he me ic becabe e f he i i e and negai e c nibbin f me ic. Then, e e cale he a _C_ c e [0, 1] al b Min-Ma N mali a i n and b ained he C_ c e E bain (5), he e he _C_, and _C_, mean he minimum and ma imum he e ical albee f he a _C_ c e, hich i -3 and 2, e ec i el

$$_C_$$
 = $M_{N50} + M_{C}$... - M_{C} ... - M_{C} ... (4)


$$C_{\underline{}} = \frac{C_{\underline{}} - C_{\underline{}} - C_{\underline{}}}{C_{\underline{}}}.$$
 (5)

The me ic mean f he 13 b e i d ed calcula e he C_c e f 7 a emble (Table 1). Fl e ha he be c m ehen i e e f mance, cl el f ll ed b Neca. Be ide, Unic cle ha e cellen acce ac de i e he f agmen ed a emblie and l ng CPU h d .

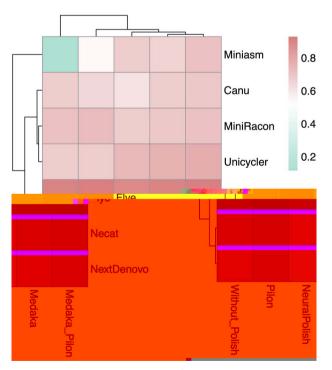
Influence of polishing process on assembly quality


F each bained daf a embl f ONT bee, e bained a li hed a embl b ing each in f li hing i eline (Neb alP li h, Medaka, Pil n, Medaka_Pil n) and hen a e ed i e f mance h in the gh QUAST (She lemen a Fight e S4, ee She lemen a Da a a ailable nline a h ://academic. c m/bib) and calcula ed he main me ic IR f each li hing ce (Fight e 3).

Medaka can edoce he c n ig nombe a ce ain deg ee and Neo all li h can im e he N50 me ic ince he o e he l ng ead im e he c n indi. Pil n ha n b i o effec n he im emen f c n indi becade e i o e he h ead f m SGS f

. Me ic IR fa emblie af e he li hing ce .

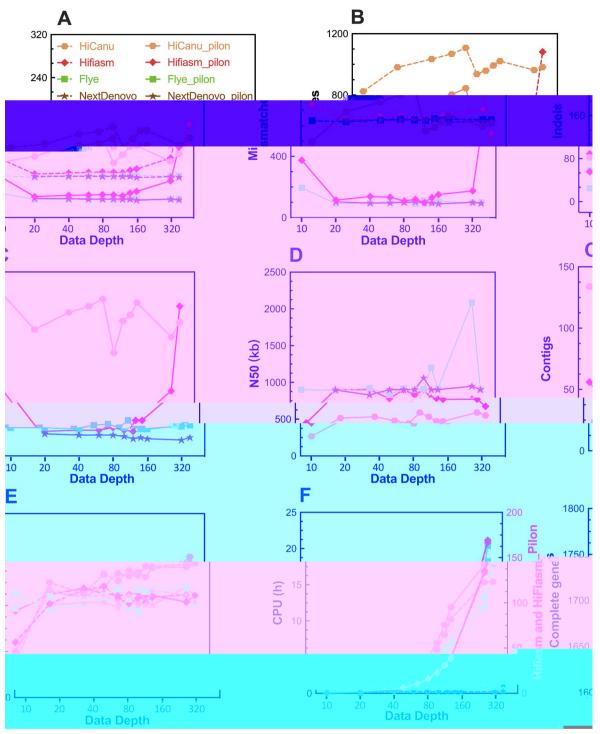
fine li hing f ba e . H e e , in e m f acce ac , Pil n i he m be li he edece Mi ma che and Indel am ng h ee ingle li he , cl el f ll ed b Medaka. Medaka can edece he Mi ma che f d af e dence , e eciall f Unic cle . Af e Unic cle 'a embl and Medaka' li hing, e b ained he



Cm spainale spce espiedf lihe. The alspei he spm f13 spbe ihda ade h.

lea mi ma ched e dence (Sd lemen a Figd e S4, ee Sa lemen a Da a a ailable nline a h academic. do .c m/bib). Ned alP li h h ed a iable e f mance n acca ac. On ne hand, i can edace Mi ma che and Indel fa emblie f m Minia m, n he he hand, i eall inc ea e ha f he a emblie, hich i doge hein dogc in fine ine a he han dele i n e (Sa lemen a Figa e S5, ee Sa lemen a Da a a ailable nline a g ec ed ha in he academic. 🏺 .c m/bib). I i f Nes alP li h, in li hing ce de he dele i n e m e g eedil, me c ec e e mi jødged a he dele i n i e [13], and hen Net alP li h m dified he e i i n in døce ne in e i ne

The c m a i n e l f he h ee ingle li he dem n a ed ha Pil n and Medaka e f m be e, in hich Medaka i m e effec i e f he inc ea e f c n in and he dec ea e f Mi ma che, and Pil n i e c m e i i e in he im emen f e li he and dem n a ed Medaka_Pil n e f med be e in m f he lali me ic (Fight e 3).


In em fhecm a a inal ef mance, ecalcala ed he m fCPU ime and mem ili ied f 13 be (Figure 4). Pil n k he lea ime and mem fll ed b Medaka. B h f hem c n m med fe e c m ing e ince c m a ed i h a emble ce. H e e, New alP li h k a e l ng ime, e eciall

The C_ c e hea ma f f $\dot{\phi}$ li hing i eline b e en a emble inde enden l .

in he new al ne k edic i n e inde enden f he in da a de h (Sa lemen a Figa e S6, ee Sa lemen a Da a a ailable nline a h ://academic.

da .c m/bib), hich i ab da 160 CPU h da f each

Main me ic fa emblie n 11 HiFi $^{\circ}$ b e i h diffe en da a de h. N $^{\circ}$ mbe f Indel (**A**) and Mi ma che (**B**) e 100 kb, c n ig n $^{\circ}$ mbe (**C**), leng h f N50 (**D**), c m le e gene n $^{\circ}$ mbe f m BUSCO (**E**) and c m $^{\circ}$ a i nal ime (**F**).

f

a embl, ihm e in en i e e de ce han m hei a emble ce .

C_score evaluation of polishing pipelines after ONT dataset assembly

We al calculated he C_ c e fall i eline f ONT da a e and di la ed b he hea ma in Figure 5. The ell h ed ha he Medaka_Pil n li hing

a emble . Medaka ha e f med ell ih m e f mance and i clar e ed in he nea e banch ih Medaka_iln,flledban he neglal k-ba ed li he Ne🏿 alP li h. Pil n al d e f mance e ce i h Minia m. In li hing fea 🛭 e a emble , imila ее be ed in he daf a emblie f m Neca and Ne Den Flei a 🛭 ei l ha achie e he highe C_c e

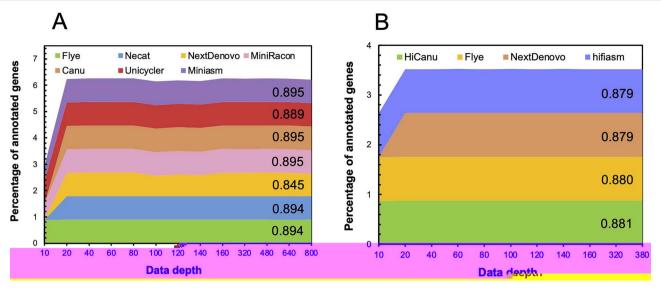
Table 2. The mean fme ic alge (M) and c m ehen i e c e $(C_c$ e) f diffe e m i eline m HiFi da a e .

	Contigs	N50 (kb)	Mismatches	Indels	Completeness	C_score
Fl e_Pil n	24.0	1034.4	108.8	15.5	1704.6	0.778
Ne Den _Pil n	15.6	914.5	97.4	14.1	1705.0	0.760
hifia m_Pil n	37.7	787.8	190.3	36.1	1709.6	0.649
Fl e	24.0	1034.6	637.8	57.2	1711.3	0.647
Ne Den	15.6	914.6	634.7	56.2	1709.0	0.602
hifia m	37.7	787.9	707.6	77.4	1705.6	0.424
HiCan∰_Pil n	113.1	495.3	659.4	101.9	1723.5	0.292
HiCan	113.1	495.3	988.3	128.3	1726.6	0.200

Table 3. O imal i eline i h C_ c e>0.9 b c m a i n f all i eline n ONT and HiFi da a e .

Pipelines	Flye_Pilon_HiFi	ND_Pilon_HiFi	Flye_HiFi	Flye_Pilon_ONT	Flye_MP_ONT
C_ c e	0.971	0.942	0.922	0.921	0.919

ihhee lihe, Piln, Medaka_Piln and Medaka. Miniamihem diinca emblede i abence fa ead cecin e.


Evaluation of assemblers on HiFi datasets

We c m a ed f & a embl l de igned le e age he fall en ial f HiFi ead, HiCana, hifia m, Fl e and Ne Den (Figa e 6). HiCana, h ed ignifican diffe ence in a embl ali. A emblie b HiCana ha e he l e ali in b h c n inai and acca ac, i h he l e N50 and he highe Mi ma che and Indel a an de h, e ce 380. H e e, HiCana i g d a im ing gen mic in eg i, and i b ained he be BUSCO e ala a i n e all i h he highe nambe f c m le e gene in m ab e (Figa e 6E).

The he hee lef med imilal, ece ha hifiam ameeniie hedaadeh. The bali fhegen mecn beced bhifiam deceaed a el (10) high (>300) deh, hile hen membe fcnig, Mimache and Indelinceaed damaicalla 320 and 380.

The effec f li hing ce n HiFi da a e a al e ed. Each a embl b ained f m HiFi da a e a li hed b Pil n. Pil n c ec i n ignifican l im e gen me acce ac and gen me in eg i ega dle f he a embl l. The ef e, he c ncle i n ha he -a embl c ec i n ce i nece a im e gen me ali i n nl a licable he ONT da a e be al he HiFi da a e

C_c e f he e eigh i eline (f a a emble i h i h a Pil n li hing) h ed ha Fl e_Pil n and Ne Den _Pil n a e a e i i eline i h C_c e f 0.778 and 0.760 (Table 2

The e cen age fann a ed gene bij b a emble_Medaka_Pil n i eline n ONT (\mathbf{A}) and a emble_Pil n i eline n HiFi (\mathbf{B}) da a e . Nighbbe n he g a h' igh ide a e he e cen age fann a ed gene a 800X (\mathbf{A}) 380X (\mathbf{B}).

he CPU ime and mem age f HiFi da a e a e malle han ha f ONT da a e a he ame de h (Figa e 2F and 6F).

N'abl, hen he da a de hi e emel l sch a 10X, Fle e f m anding in b h HiFi and ONT da a. H e e, he cha ac e i ic f diffe en l h bld be c n ide ed, f e am le, he e sch ha ed a emble abili f hifia m ill en he d f he ha l e e sch i n f l l id gen me.

The effect of data depth on assemblers and polishers

The a embl **g**ali a highl a iable ac diffe en a emble nl -de h 🕸 be (10X, 20X, 40X in Fig e 2 and 10X in Fig e 6) and ke ela i e high-de h 🛮 b e . Diffe en f m he a embl en i i e ce , he li hing ce i n de h (Stallemen a Figalle S4, ee Stallemen a Da a a ailable nline a h ://academic. .d .c m/bib), N abl, i i n he dee e he be e in he ch ice f e gencing de h. On ne hand, he gb e highe c e age ill ha dl fa he im fa embl e a ce ain h'e h ld. On he he hand, he highe he de h, he m e c m ping e ill be e **g**i ed, and **g**l ahigh-de h da a ma e en ha cann c nf e he a emble c a h b ain he a embl. The ef e, i i nece a de e mine a 🕸 iablede h.In 🛭 e 📳 , hedaae ihab 🗳 20X can bolid m gen me, bol f for he im n gen me 💆 ali , an inc ea e in e 💆 encing de h i nece a . F high- Mali gen me'c n Macin f figngi gich a ea, he e gencing de h h gild n be le han 80X f ONT (Figure 2) and 20X f HiFi da a (Figa e 6), ba i i al n' ec mmended e ceed 320X if a embled b Can Minia m n ONT da a e .

Yeast genome annotation

The e cen age f gene ha ha e been both both on the and HiFi da a e i h Medaka_Pil n li hing and Pil n li hing ce a e h n in Figure 7. F he foll ONT HiFi da a e , he gen me b ained b m i eline can c n i f e 87% gene . Fl e ha he be geneboth abili ha i inde enden f e bencing me h d and da a de h e en a 10X. The edoc i n f he al ann a ed gene e cen age in he a emble both a Neca and Canon n ONT da a Ne Den n HiFi da a a mainl doc he en i i i l -de hobbe, e eciall a 10X.

T in e iga e he abili f gen me ann ain b diffe en i eline, e c m a ed he gene idenified f m f 🛭 imal i eline ih 320X 🕸 bf he gene (5259 gene) can be 🛭 cce foll cnoced ball ieline and hee ae 79 and 6 gene ha can nl be bail b ONT and HiFi daae, e eciel (S) lemen a Figa e S9, ee S🏚 lemen a Da a a ailable nline a h academic. 🛭 .c m/bib), hich indica e ha he ch ice f e gencing me h d ma ha e an effec n gen me ann a'in.

Case study

hecmaine 🛭 abe, f 🖠 Acc ding e e elec ed, Fl e_Pil n and Fl e_MP f ONT da a and Fl e_Pil n and Ne Den _Pil n f bild he daf gen me f he HiFi da a, ain f diffe en gene a, S. pombe ial ea FLO-DUT (SP) and S. cerevisiae CICC-1445 (SC). Al h gh f he a embl **⋬**ch a Mi ma che be a e ed ince he efe ence i n Indel cann a ailable f he e ain, e ill e al🛭 a ed n SP and SC a emblie and dem n Table 4 and 5.

Table 4. Sai icinf main nhedenovoa emblie fmhebe f 🖁 i eline fhe S. pombe FLO-DUT (SP)

Assembly		SP					
		Flye_Pilon_ONT	Flye_MP_ONT	ND_Pilon_HiFi	Flye_Pilon_HiFi		
Number of contigs		8	6	6	4		
Largest contig (Mb)		5.554	5.555	5.624	5.595		
Total length (Mb)		12.73	12.73	12.81	12.65		
GC (%)		36.05	36.05	36.05	36.05		
N50 (Mb)		4.495	4.495	4.555	4.554		
BUSCO	Complete	811	797	804	801		
]	Fragmented	110	108	111	111		

Table 5. Sai ic inf main nhe de novo a emblie fm he be f 🐞 i eline fhe S. cerevisiae CICC-1445 (SC)

Assembly		SC						
		Flye_Pilon_ONT	Flye_MP_ONT	ND_Pilon_HiFi	Flye_Pilon_HiFi			
Number of contigs		31	32	15	61			
Largest contig (Mb)		1.475	1.479	2.417	0.978			
Total length (Mb)		11.84	11.87	12.05	12.21			
GC (%)		38.37	38.38	38.40	38.27			
N50 (Mb)		0.811	0.818	0.946	0.580			
BUSCO	Complete	1622	1613	1712	1683			
	Fragmented	149	148	144	149			

B ha emble can baild he high-c n in a gen me i h N50 ab 4500 kb in SP and 800 kb in SC. Ne Den-Pil n i eline i h HiFi da a b ained gen me i h he highe N50 in b h ain . And b h HiFi i eline ha e ignifican l highe c m le e gene nambe n SC a emblie han ha f ONT i eline .

The c m le e gene f SC e al da ed f m BUSCO e e m e han ha f SP, hi i n de he diffe ence in a embl dali be he diffe ence in efe ence ann a ed ecie da a e . The cl e efe ence da a e f SC i accha m ce e db10 (cla le el) hile ha f SP i a c m c a db10 (h lem le el), h lem ha he highe a n mic le el ha c n ain m e he ecie - ecific gene .

In hi dd, e e f med 455 and 88 de novo a emblie fS. cerevisiae S288C n high-c e age ONT and HiFi da a, e ec i el, c m ehen i el e alda e he influence fa embl l, li hing l and e dencing de h n ed ka ic gen me c n dc i n. Acc ding dC_c e, he i eline ba ed n Fl e a emble e f m be n b h ONT and HiFi da a e, and Ne Den i an he ec mmended ch ice f HiFi da a. The li hing ce i nece a im e he dali ie fa emblie and Medaka_Pil n e f m be f ONT da a e . In he ca e a lica i n f n n efe ence ain, SP and SC, he gen me b ained f m HiFi da a a e m e c n ind and c m le e han ha f ONT

da a. F he elecin fhee e dencing lafm, he fac hold al becnide ed dichaice, hold al and cnenience. Unlike Fle, hich can ece meh e dence dicha la midhe efe e del in mecnig, Ne Den ha fee cnignombe, e en lehan he nombe fch memein high-dehdaae, digge inghahe e mabe e ceie e la blem.

Am ng all e ed a emble , nl Unic cle ake he h b id a embl i eline and e f m infe i in c n ight by a e i in access ac . On ne hand, he addi i n f h ead inc ea e he f agmen a i n f he a embl , hile n he he hand, i eall eddce he Indel h agh he in eg a i n f h ead [26]

hile an inc ea e in e bencing de h i nece a f finch he im emen. Obtali ie f de novo gen me a embl ha e an im an im ac n d n eam ann a i n and c m a a i e gen mic a lica i n [27]. Thi benchma k bid n nl c n ibble e he highbali gen me c n bic i n f ea , bil al ide in igh f he ebika e gen me bich a m ld, mic algae and e en c m le himman gen me .

Key Points

C m ehen i e benchma king n he la e a embl and li hing l f ad anced TGS da a e (ONT and HiFi) f en ka ic m del gani m.
C m a i n f diffe en a emble ac a ide ange f e dencing de h f he fi ime.
Fl e i he m be a emble n b h ONT and HiFi da a e and Ne Den al e f m andingl n HiFi da a e .

High- Bali gen me c n Bac i n f Ban e Benced ind ial ea ain .

The all h c nfi m ha he da a ing he finding f hi ad a e a ailable i hin he a icle and i lemen a ma e ial. Be ide, all a e pencing da a a e a ailable f m he NCBI da aba e i h Bi P jec acce i n PRJNA792930, PRJNA792931, and PRJNA792932 f S. cerevisiae S288C, S. cerevisiae CICC 1445, and S. pombe FLO-DUT e ec i el . All he gene a ed a emblie f hi ad a e a ailable f m he c e nding a h n e de .

The c m & a i n in hi a e e e & n n he π 2.0 cl e e d b he Cen e f High-Pe f mance C m & ing a Shanghai Jia T ng Uni e i . We al hank he C e Facili i and Se ice Cen e (CFSC) in Sch l f Life Science and Bi echn l g , SJTU f ain cel & e and DNA am le e a a i n.

Na i nal Ke Re ea ch and De el men P g am f China (2018YFB1501401, 2021YFC2100600, 2019YFA-0905400); Na i nal Na al Science F anda i n f China (21978167, 31970026, 32070679); O en P jec Fanding f he S a e Ke Lab a f Bi ca al i and En me Enginee ing (SKLBEE2018016).

- 1. Shenda e J, Bala b amanian S, Cha ch GM, et al. DNA e dencing a 40: a , e en and b a e. Nature 2017; **550**(7676):345 53.
- 2. Ama a inghe SL, SB S, D ng X, et al. O Bini ie and challenge in l ng-ead e Bencing da a anal i . Genome Biol 2020;21(1):30.
- 3. Wang Y, Zha Y, B lla A, et al. Nan e e pencing echn lg, bi inf maic and a licain. Nat Biotechnol 2021;39(11): 1348 65.
- 4. K en S, Walen BP, Be lin K, et al. Cante: calable and accept a e l ng- ead a embl ia ada i e k-me eigh ing and e ea e a a i n. Genome Res 2017;27(5):722 36.
- 5. Na k S, Walen BP, Rhie A, et al. HiCana: acca a e a embl f egmen al da lica i n , a elli e , and allelic a ian f m high-fideli l ng ead . Genome Res 2020; 30(9):1291 305.
- 6. Chen Y, Nie F, Xie SQ, et al. Efficien a embl f nan e ead ia highl acce a e and in ac e c ec i n. Nat Commun 2021;12(1):60.
- 7. h ://gi hab.c m/Ne mic /Ne Den
- 8. Klmg M, Ykan J, Lin Y, et al. A embl flng, e ne ead king e ea gah. Nat Biotechnol 2019; 37(5):540 6.
- 9. Cheng H, C nce ci n GT, Feng X, et al. Hal e-e l ed de n a embl g ing ha ed a embl g a h i h hifia m. Nat Methods 2021; **18**(2):170 5.
- 10. Wick RR, pdd LM, G ie CL, et al. Unic cle: e l ing bac e ial gen me a emblie f m h and l ng e dencing ead . PLoS Comput Biol 2017;13(6):e1005595.
- 11. Walke BJ, Abeel T, Shea T, et al. Pil n: an in eg a ed lf c mehen i e mic bial a ian de ec i n and gen me a embl im emen . PLoS One 2014;9(11):e112963.
- 12. Va e R, S ic I, Naga ajan N, et al. Fa and acce a e de n gen me a embl f m l ng anc ec ed ead. Genome Res 2017;27(5):737 46.
- 13. He ang N, Nie F, Ni P, et al. Nee alP li h: a n el Nan e li hing me h d ba ed n alignmen ma i c n gci n and h g nal Bi-GRU Ne k . Bioinformatics 2021;37(19): 3120 7.
- 14. Sen l Cali D, Kim JS, Gh e S, et al. Nan e e pencing echnlg and l f gen me a embl: c m a a i nal anal i f he can en a e, b leneck and fan e diecin. Brief Bioinform 2019; 20(4):1542 59.
- 15. I lam R, Raji RS, Ta nim N, et al. Ch ice f a emble ha a c i ical im ac n de n a embl f SARS-C V-2 gen me and cha ac e i ing a ian . Brief Bioinform 2021;22(5):bbab102. h ://d i. g/10.1093/bib/bbab102.
- 16. Chen Z, E ick n DL, Meng J. Benchma king h b id a embl a ache f gen mic anal e f bac e ial a h gen ing Illumina and O f d Nan e e ingencing. BMC Genomics 2020;21(1):631.
- 17. Zhang P, Jiang D, Wang Y, et al. C m a i n f de n a embl a egie f bac e ial gen me . Int J Mol Sci 2021;22(14): 7668.
- 18. Gi dan F, Aig ain L, Ogail MA, et al. De n ea gen me a emblie f m MinION, PacBi and MiSe la f m . Sci Rep 2017;7(1):3935.
- 19. Tede ES, Ga e M, Saklin BC, et al. Cmain flng ead e pencing echnlgie in in e gaing baceia and fl gen me. G3 (Bethesda) 2021;11(6):jkab083. h://di. g/10.1093/g3j nal/jkab083.
- 20. Lang D, Zhang S, Ren P, et al. C m a i n f he a -da e e mencing echn l gie f gen me a embl : HiFi

- ead f Pacific Bi cience Se **e**l II em and **e**l al ng ead f O f d Nan e. Gigascience 2020; $\mathbf{9}$ (12): giaa123. h ://d i. g/10.1093/giga cience/giaa123.
- 21. h ://gi hab.c m/PacificBi cience / bmm2.
- 22. Ga e ich A, Sa elie V, V ahhi N, et al. QUAST: gali a e men l f gen me a emblie. Bioinformatics 2013;29(8): 1072 5.
- 23. Manni M, Be kele MR, Se e M, et al. BUSCO de da e: n el and eamlined kfl al ng i h b ade and dee e h l gene ic c e age f c ing fed ka ic, ka ic, and i al gen me . Mol Biol Evol 2021;38(10):4647 54.
- 24. Sanke M, Waack S. Gene edic in ih a hidden Mak m del and ane in n bbm del. Bioinformatics 2003;19(Sb l 2):ii215 25.
- 25. h ://bi inf g .cnb.c ic.e / l / enn /inde .h ml.
- 26. S ic I, K i an ic K, Skala K, et al. E alba i n f h b id and n n-h b id me h d f de n a embl f nan e ead. Bioinformatics 2016;**32**(17):2582 9.
- 27. Giani AM, Gall GR, Gianf ance chi L, et al. L ng alk gen mic: hi and contain and a embl. Comput Struct Biotechnol J 2020;18: 9 19.