
MATERIALS AND METHODS
Isolation and growth of 1-NN-degrading bacteria. The bacteriumSphingobiumsp. strain JS3065 was

isolated from soil collected at a former chemical manufacturing site in NJ, USA, where environmental con-
taminants include 1-NN. Enrichments for isolation of 1-NN degraders were conducted in nitrogen-free 1/2
strength minimal salts broth (MSB) (58), pH 7.0, supplemented with 1-NN (100-200mM). The enrichments
were incubated at 30°C in a shaking incubator at 180 rpm in Erlenmeyer� asks. Isolation and growth of the
pure culture was done on agar plates containing 1/2 strength MSB with 1-NN crystals in the lids as sole car-
bon and nitrogen source. Taxonomic identi� cation of the isolate was performed with the universal 16S rRNA
gene primers, 27F (59-AGAGTTTGATCCTGGCTCAG-39) and 1492R (59-GGTTACCTTGTTACGACTT-39).

Growth of pure 1-NN degrading bacteria was conducted in 1/2 strength MSB containing 100–200 mM
1-NN as sole carbon, nitrogen and, energy sources. Utilization of the substrate was indicated by HPLC analysis
and by nitrite accumulation in the culture. Biomass accumulation was estimated by measurement of protein
after completion of growth at various concentrations of 1-NN. Protein concentration was estimated by the
bicinchoninic acid (BCA) method (59). Nitrite concentration was quanti� ed by the Griess method (60).

Genome sequencing and analysis. Total genomic DNA was extracted from 1-NN-grown cells of
strain JS3065 using an UltraClean microbial DNA isolation kit (Mo Bio Laboratories, Inc.). DNA Sequencing
was performed with the Paci� c Bioscience (PacBio) RS technology by the Shanghai OE Biotech Co., Ltd.
The raw reads were initially assembled with Falcon (61), and the resultant consensus sequences were proc-
essed with Circulator (62) for circularization, resulting in the closed genome sequence. The gene annota-
tion was performed with RAST Artemis online (https://rast.nmpdr.org/).

Plasmid construction and DNA manipulation. To express the putative 1-nitronaphthalene dioxyge-
nase, a DNA fragment containingninAaAbAcAdwas ampli� ed from Sphingobiumsp. strain JS3065 genomic
DNA using the primer setninA-F-HindIII (59- gaccatgattacgccAAGCTTATGGAACTGGTAGTAGAACCCCTC-39)
and ninA-R-EcoRI (59-aaaacgacggccagtGAATTCTCACAGGAAGATTAGCAGGTTGTG-39). The underlined sequen-
ces are restriction enzyme recognition sites, and the lowercase sequences are homologous arms used for
ligation to convenient vectors by homologous recombination. The above fragment was ligated to the linear-
ized vector pUC19 or pRK415 digested with restriction endonucleases HindIII and EcoRI, resulting in con-
structs pRK415-ninAand pUC19-ninA. TheninAaAbAcAdwas constitutively expressed from thelacpromoters
of the vectors.

Biotransformation of 1-NN. E. coliDH5a cells expressing recombinant 1-nitronaphthalene dioxyge-
nase from plasmid pUC19-ninA were cultured in lysogeny broth (LB) containing ampicillin (100mg/mL).
The culture was harvested by centrifugation during stationary growth (OD600nm 1.2–1.5), washed twice
with 50 mM Tris-HCl buffer (pH 7.4) and suspended in MSB to an OD600 of 1.0. TheE. coliDH5a cells har-
boring the pUC19 vector were used as control. The reaction mixtures containing 1-NN (; 50 mM) were
incubated on a rotary shaker at 30°C and 180 rpm. Samples were removed at appropriate intervals for
measurement of the concentrations of 1-NN and nitrite in the mixture. The samples collected at 5 min
were used for preparation of samples for GC-MS analyses.

Determination of the substrate speci � cities. The substrate speci� city of 1-nitronaphthalene dioxy-
genase toward a variety of nitroaromatic compounds was investigated by a whole-cell biotransformation
method based on the rate of nitrite release. All chemicals were purchased from Sigma-Aldrich with the follow-
ing exceptions: 1,2-dihydroxynaphthalene, 2-nitrotoluene, 2,3-dichloronitrobenzene, 2,3-dichloronitrobenzene,
2-nitro� uorene and 9-nitrophenanthrene (Macklin, China). Nitroaromatic substrates were used at a� nal con-
centration of 0.2 mM. Biotransformation of the substrates byE. colicells carrying pUC19-ninA was performed
as described above. The denitration activities were calculated based on the nitrite concentrations at 15 min for
each substrate. The products for each substrate were analyzed by GC-MS.

Growth of Ralstonia sp. strain U2 on 1-NN. Plasmids pRK415 and pRK415-ninAwere introduced into
Ralstoniasp. strain U2 by conjugative mating. The donorsE. coliS17-1g-pir carrying pRK415 or pRK415-ninA
and the recipientRalstoniasp. strain U2 were grown in LB media with appropriate antibiotics to an OD600nm

of 0.6. Mating procedures were performed according to a method described previously (63). The presence of
introduced plasmids in strain U2 was con� rmed by PCR and sequencing. The resultingRalstoniastrains har-
boring pRK415 or pRK415-ninAwere tested for growth on 1-NN at various concentrations in MSB containing
2% (wt/vol) XAD-7 beads (Sigma-Aldrich) to minimize the toxicity of the substrate. The� asks inoculated
with Ralstoniastrains were incubated on a rotary shaker (30°C and 180 rpm) and the culture turbidity was
monitored over time.

Enzyme assays.Crude extracts were prepared from 1-NN or succinate-grown cells of strain JS3065
by ultrasonication and subsequent centrifugation (16,000� g, 40 min). All assays were performed in
0.5 mL of 50 mM Tris-HCl buffer (pH 7.6) containing 30mg of protein from the crude extracts and genti-
sate (0.1 mM). Gentisate1,2-dioxygenase activity was assayed by measuring the increase in absorbance at
330 nm. The molar extinction coef� cient of the product, maleylpyruvate, was taken as 13, 000 M2 1cm2 1 (64).
One unit of enzyme activity is expressed as the production of 1mmol of product per min at 30°C. Speci� c
activities are expressed as units per mg of protein.

Analytical methods. The concentration of 1-NN was quanti� ed by HPLC (Waters e2695 Separation
Module) with a C18 reversed-phase column (5mm, 4.6 � 250 mm). The eluent was monitored at
280 nm. The mobile phase consisted of water (A) and methanol (B), containing 0.1% (vol/vol) acetic acid
in both. The elution gradient was 20% of solvent B for 5 min, then increased to 90% B over 30 min. GC-
MS analyses were conducted on a TRACE 1310 gas chromatograph (Thermo Fisher Scienti� c) using a
capillary column HP-5MS (0.25 mm� 30 m, Agilent Technologies). The conditions were as follows: injec-
tion volume, 1mL; interface temperature, 290°C; source temperature, 230°C; column temperature program:
initial temperature 70°C for 2 min, raised to 130°C at 5°C/min, increased to 180°C at 10°C/min, increased to
285°C at 5°C/min, hold for 1 min. Mass spectrometer conditions were: 33–750 m/z mass range at an
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electron energy of 70 eV, EI energy source. After the aromatic substrates were biotransformed, the clari� ed
supernatants were extracted with 3 volumes of sodium hydroxide-washed ethyl acetate. The fractions con-
taining the products were evaporated to dryness. The dried samples were dissolved in acetonitrile and
added to equal volume ofN,O-bis (trimethylsilyl) tri� uoroacetamide (BSTFA) for trimethylsilyl (TMS) deriva-
tization at 60°C for 30 min. All the products were analyzed by GC-MS. All proposed products were identi-
� ed by comparison of retention times and mass spectra with those of authentic standards. The standards
were purchased from Sigma with the following exceptions: 3-chlorocatechol (TCI), 1,2-dihydroxynaphtha-
lene (TCI) and 3,4-dichlorocatechol (CFW Laboratories Inc).

Ethical statement. This work does not include any human or animal materials.
Data availability. The complete genome ofSphingobiumsp. strain JS3065 is available in the NCBI

database under BioProject identi� er (ID)PRJNA867112or BioSample accessionSAMN30184334.
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