
Uncovering the Formation and Selection of Benzylmalonyl-CoA from the Biosynthesis of Splenocin and Enterocin Reveals a Versatile Way to Introduce Amino Acids into Polyketide Carbon Scaffolds

Chenc Zixin	chen Den	Cha g, [†] W	ng, ^{§,†} Ven I	[†] Ron Liu, [‡] ຄ	g Hua and X	ang, ^{§,†} udonį	Yan g Qu	Yan * ^{,†}	, ^{§,‡}]	Hongmir	ı Ma,	† Zheng	g Dai, [†]	Benying Zhang, [†]	
†	ž	2, 2	i	i ,	i i , 1		i	,	i	., (300 1,	i	i . i,),	ii.,	i, i., i	i . i,
‡		,	2,	i ,	i					i .,	i	i	, i	i ., , i	,

Journal of the American Chemical Society

(1), i (2), - (3) (3)

i i i (2) i ii. i i iii, i i (3) (i .) (i . 2). i i /.

RESULTS

Discovering Polyketides with Amino Acid Origin. i i . . . fi

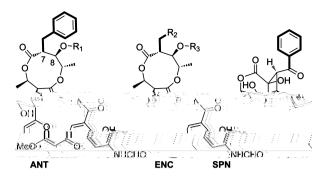


Figure 2.

i-i fl 31, i i i

Cloning the Splenocin Biosynthetic Gene Cluster.

i , , ii i, i fii i... ifi i 1). *C*, *D* M) 11 F-L, N O), B)31) 21, i

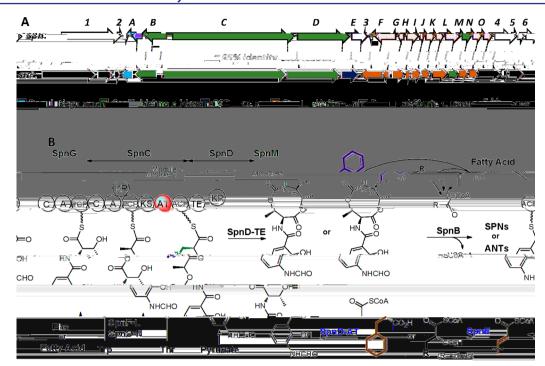
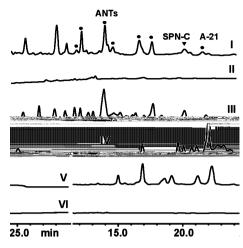
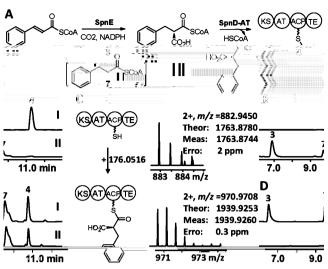
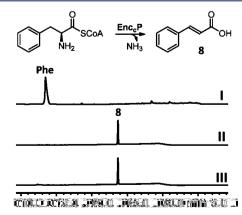



Table 1. Deduced Functions of ORFs in spn Biosynthetic Gene Cluster (Accession Number KP719128)


a	i ()	, i ,i i	i i, (%)	, i
1	1 0	i (01 3),202	2	(i)
2	1	(02 2 2 2), 22	3	, i , i
	1 3	(3),	100	
	33	(3),	2	
	2	(3),		()
	12 3	(3 0), 22		()
	0	(3 1),		, , - , i , ,
3	113	$(023 \ 22 \ 30) \dots -10$	3	,
	2	(3 2),		- i
	2	(3 3),		
	3 1	(3),		,
		(3),		,
	2 2	(3),		, , ,
	1 0	(3),		- · · · · · · · · · · · · · · · · · · ·
	3	(3),		- · · · · · · · · · · · · · · · · · · ·
	2	(3), 22		3- , - ,
	2 2	(3 0),		2,3- i
_	22	(3 1),		
4		(003 0), . 4		i i i i
<i>a</i>	13	(030 21), . §		, i. i. i
4	3	(003 11), . ⁴		

 ii
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i
 i


Characterization of Benzylmalonyl-CoA as an Extender Unit and the selectivity of the AT Domain.

(3) , ifi ifi i i i ffi i (5) **(6)**). i i (3) ii i i i , i iii, 2.3 i -1 $1.\ 2 \pm 0.00$ (5) (0. 1 \pm 0.0 1 2). iff. (, i,), ii, (3) ffii i i (i .

Correlation of Amino acid Origin to Benzylmalonyl-CoA Synthesis and Crosstalk of *enc_c* and *spn*. i

(i . **(4)** fl i, 1 mⁱ P, H) Η, **(4)** , į į -21) fi. i i i (3) 1). -21 i ιi i i i fl 31 13,20 i i i i i i *E*. i i (8) (i. i, i, fi

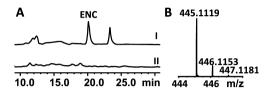
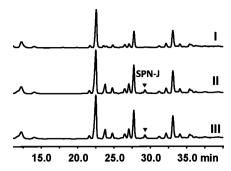



Figure 7. - i i i . . . 31 () $2 \ 1 \ (\Delta \ P) \ () . ()$

Engineering ant Pathway to Produce SPN. i , i , i , i 22 . i i . fi. i i ifi i -3), (3). **(4)**.¹³ i ii **(4)**. 10 , 23 **(4)**.¹¹ H (i i 22 2110, i P-Η), (i . Η $_{\mathrm{fi}}$ 2).10 (i . i ii.

DISCUSSION

Novel Strategy to Convert an Amino Acid into Polyketide Extender Unit. i i i ii i i α i ii, α i . i iff. (1), β i (2), ifi i $i.^3$ i i. , i i i i ff. i, i,,i (3). α , β - α,β i α,β ifi i i, fi

Versatility for Converting Other Amino Acids into CoA-linked Extender Units, and Significance for Expanding Extender Unit Variety. - i - i (i . 1). ffi i i i ifi ii iii ifi ifi 13,20,2 α,β α, i 3-i (i . i i, -(13)i i i 3 i,2 ff i ii, iii - i

Broad Selectivity of the AT Domain and Potential to Introduce Structural Diversity into the Polyketide Scaffold. i i . .ii , i ff i i i (3).i i i i . i. . i ., ιi . i.¹³ , i ,i i iιi , i i, ff i . i, i, i i i i , i i ff . i ii, -i , ifi i - i

CONCLUSION

■ ASSOCIATED CONTENT

Supporting Information

■ AUTHOR INFORMATION

Corresponding Author

* . .

Author Contributions

i fi i i...

ACKNOWLEDGMENTS

REFERENCES

() $N^{9} \cdot P \cdot R \cdot 2008, 25, 2 - 3 \cdot (1)$. , . . <u>. i</u> , . . , . .