······································
- , -, . , (A) ,
2014)
A
C (D <i>l.</i> , 2011; <i>l.</i> , 2011;
'A ('A A)
(, 2010;,, <i>I</i> ., 2010),,, (
A B <i>l</i> . (2013), -
· · · · · · · · · · · · · · · · · · ·
18 🖌 A. 18 🖌 A
<pre></pre>
Di ^A A Di ^A A

Materials and methods

Sample collection

C]	BA	15-	10-
		(112°20'E, 16	50' F)
C ,	``		
• •	× · · · · · · · · · · ·		, C
A	•	· · · · · · · · · · · · · · · · · · ·	
× · · · · · ·	· · · · · · · •	× · · · · · · · · · · ·	
5		2	3,
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	× · · · · · ·
	20	, ' ≜ A , ,	® (, ,
. ' ¥A	B (<15	. A

	ΆA	®		–
80 °C	•	·		
•			(3	, ₁)
5			(0.22 µ	.) -
. E		20	ľΑ	®
−80 °C				

Nucleic acid extraction and cDNA synthesis

PCR, cloning and sequencing

н. ₁ .	A A	(1) (-	, .	, 1990;
	<i>l.</i> , 1999; B	. 8		2000; D	l.,
2001;	&	, 20	12;	l.,	2012).
	D A	A11			
× * *	s., , s	(D ,	<i>l.</i> , 201	1),	
		С. С			
	: 5			94 °C,	
35		· · · · · · · · · · · · · · · · · · ·	94 °C	1 , ,	· · · · · ·
1	(· · · · · · · · · · · · · · · · · · ·			
· · · ·	1), 、		72 °C	1	. F 、
	× × · · ·		°C 10	. C	-
· ·		. (1 204	1)	×
x		(C B	$\left(\begin{array}{c} I \\ C \end{array} \right)$	
•	C	21-	, д,	C ()	· · ·
	J J J J	С.	E		1
	А		().	-
					В
(, C ,) .	13I	-/		·
			C A	E	2
().				

T₄ **1.** PCR primers and results

		No. of sequence	ed clones		
Primer	Length of PCR product (bp)	No. of fungal inserts	No. of sponge inserts	Annealing temperature (°C)	Reference
SSU					
nu-SSU-0817-5/nu-SSU-1196-3	379	57	35	54	Borneman & Hartin (2000)
nu-SSU-0817-5/nu-SSU-1536-3	719	17	37	56	
EF4/fung5	558	283	5	55	Smit <i>et al.</i> (1999)
EF4/EF3	1400	4	37	53	
EukA/EukB	1700	0	49	55	Díez <i>et al.</i> (2001)
ITS					
ITS1/ITS4	630	0	34	55	White <i>et al.</i> (1990)
ITS1/ITS2	300	0	29	56	
LSU					
LROR/LR3	600	0	10	50	Poter & Golding (2012)
LROR/LR5	950	0	17	48	Schoch <i>et al.</i> (2012)

Statistical and phylogenetic analysis

Α	1.29
(1., 2009)	A
	<i>l.</i> , 2013).
· · · · · · · · · · · · · · · · · · ·	
•	
, Е	. В. –
(C <i>l.</i> , 2010). C	
18 A.	• • • • • • • • • • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·	=
· · · · · · · · · · · · · · · · · · ·	
(80%).	· () · · · · · · · -
3%	1.29.
	' Е. В., -
	, ,
FAC E. F	-
(D) , A	A -
ав2010. Г	0), , , , , , , , , , , , , , , , , , ,
B A	
С В С	;
/B)	Е А 5.1,
. С А 🙀	е а 5. 1 (, , , , , , <i>l</i> .,
2011). /*	· · · · · · · · · · · · · · · · · · ·
Е А 5.1.)
	and the second
ЕА 5.1.	(100 -
)	
	A

Nucleotide sequence accession numbers

B 245896– 245921.

Results

Feasibility of different primers

$ _{\mathcal{L}^{\infty}(\mathbb{R}^{n})} \leq _{\mathcal{L}^{\infty}(\mathbb{R}^{n})} \leq _{\mathcal{L}^{\infty}(\mathbb{R}^{n})} \leq _{\mathcal{L}^{\infty}(\mathbb{R}^{n})} \leq $				× × **
	• • •	2 X 1	A A	- · · ·)
. A			1, (C
	,	0 / 5,	0 /	3, E A/
Ε Β,			× 1	
a second a second a second a			· · ·	EF4/. 5
		,	283	18
▲ ▲ ↓ (· · · · · · · · · · · · · · · · · ·	•	88	. 1	
0817-5/ -	-1196	-3, -	-0817-	-5/
1536-3, EF4/EF	3		- ,	6 - X -
		· · · · · ·		• •
, . .				, EF4/
. 5	· · · ·			
. F				EF4/. 5
	×	18	A	
	. A			
DP A				

Richness and distribution pattern of spongeassociated fungi

A	2,			
(> 90%)	· · · · · · · · · · · · · · · · · · ·			. A
	C 1)	× · · ·	
			•••	
• . • . • . • •			. (
),	e e se vere e se	•	
×			• • • •	
	A CARLES AND A CARLES	· · · · · ·	ъ	
🕈 F AC,	· · · · · · · · · · · · · · · · · · ·		· · · · · · ·	

(D), .		A. F	D
(F.1)), , , , , ,			× · · · ·
		I		x
	× · · · ·			

T₄ 2. Sequencing results and statistical analysis

	SW	TD	TR	XD	XR
No. of sequences*	88	49	53	44	49
No. OTUs [†]	15	10	9	7	4
Goods_coverage [‡]	0.955	0.918	0.925	0.932	0.980
Chao1 [§]	17	12	12	9	4
Shannon [¶]	3.323	1.849	2.227	1.615	1.627
Simpson [¶]	0.875	0.529	0.703	0.502	0.647

TD, *Theonella swinhoei* DNA-derived library; TR, *T. swinhoei* cDNA-derived library; XD, *Xestospongia testudinaria* DNA-derived library; XR, *X. testudinaria* cDNA-derived library; SW, seawater cDNA-derived library.

*Only high quality sequences (283 out of 359) were showed and submitted to subsequent analysis.

[†]The observed OTU numbers which were close/equal to Chao1 indices suggested the sequencing effort was sufficient to generate reliable diversity information, which was supported by Goods_coverage (> 90%) as well.

[‡]Goods_coverage indicated the coverage of each library.

 $^{\$}\mbox{Chao1, nonparametric richness estimator, indicated the richness of each dataset.}$

[¶]Shannon and Simpson are the diversity index. High Shannon/Simpson values imply high diversity.

· · · · · ·	, <u>]</u>	D ^A A	A
D A	ΑΑ	· · · · · · · · · · · · · · · · · · ·	Di A 3, .
D A	: (1) D' A	; (2)	, DA
3)	2). F	,	
x		- 8, ;	(2) 21 (2)
18	; (3) 10,	(2)	DA
, , , , ,		19	24; (5)

omy assignments and phylogenetic sis

	, A , B	and the second	B1 -
· / · ·)	· · · · · · · · · · · · · · · · · · ·	. A	
4, .	× × · · ·	(15/26)	

T_E 3. OTU distribution and BLAST results

OTU	XD	XR	TR	TD	SW	Next relative	ACCN	Identity (%)
OTU8	0	0	0	0	18	Balansia henningsiana	AY545727	99
OTU21	0	0	0	0	16	Eupenicillium limosum	EF411061	98
OTU1	0	0	0	0	14	Peziza proteana	AY544703	97
OTU17	1	0	0	0	9	Balansia henningsiana	AY545727	98
OTU18	1	11	7	1	8	Mycosphaerella punctiformis	DQ471017	100
OTU10	1	14	12	3	6	Alternaria alternata	DQ678031	99
OTU7	0	0	0	0	6	Peziza proteana	AY544703	97
OTU22	0	0	0	0	4	Botryotinia fuckeliana	AY544695	98
OTU2	26	23	25	33	1	Aspergillus fumigatus	AB008401	99
OTU23	0	0	0	0	1	Neofabraea malicorticis	AY544706	95
OTU4	0	0	0	0	1	Xylaria hypoxylon	AY544692	97
OTU14	0	0	0	0	1	Aureobasidium pullulans	DQ471004	94
OTU20	0	0	0	0	1	Cryptococcus gastricus	DQ645513	97
OTU5	0	0	0	0	1	Eutypa lata	DQ836896	94
OTU9	0	0	0	0	1	Catenomyces sp.	AY635830	99
OTU11	0	0	1	0	0	Pleospora herbarum	DQ767648	96
OTU12	0	0	2	0	0	Catenomyces sp.	AY635830	99
OTU13	0	0	1	1	0	Orbilia auricolor	DQ471001	97
OTU15	1	0	0	3	0	Tricholoma aestuans	AY757267	93
OTU16	0	0	1	1	0	Petriella setifera	DQ471020	98
OTU19	9	0	0	4	0	Cladosporium sp.	AY016351	99
OTU24	4	0	0	0	0	Cochliobolus heterostrophus	AY544727	99
OTU25	1	1	0	0	0	Dothiora cannabinae	DQ479933	99
OTU26	0	0	1	1	0	Meria laricis	DQ471002	94
OTU3	0	0	0	1	0	Cladosporium herbarum	DQ678022	98
OTU6	0	0	3	1	0	Chaetomium globosum	AY545725	99

XD, Xestospongia testudinaria DNA-derived library; XR, X. testudinaria cDNA-derived library; TD, Theonella swinhoei DNA-derived library; TR, T. swinhoei cDNA-derived library; SW, seawater cDNA-derived library.

(8 21) (2). D	B
x x x x x x x x x x x x x x x x x x x	· · · · · · · · · · · · · · · · · · ·
, 148	
77.3% - , , , , , , , , , , , , , , , , , ,	(<i>l.</i> , 2013). ,
(F . 2) - 2, - A, II	· · · · · · · · · · · · · · · · · · ·
$D^{\prime} A , \dots , 10, \dots 10$	₩A
en e	• • • • • • • • • • • • • • • • • • •
Discussion	na an a
Methodological concerns	C

FEMS Microbiol Ecol 90 (2014) 935-945

• • • • • • • • • • • • •

_

· · · · · · · · · ·

*	5				
ΟΤυ	Phylum	Subphylum	Class	Subclass	Order
OTU8	Ascomycota				
OTU21	Ascomycota				
OTU18	Ascomycota				
OTU13	Ascomycota				
OTU19	Ascomycota				
OTU25	Ascomycota				
OTU26	Ascomycota				
OTU22	Ascomycota	Pezizomycotina			
OTU5	Ascomycota	Pezizomycotina	Sordariomycetes		
OTU6	Ascomycota	Pezizomycotina	Sordariomycetes		
OTU15	Basidiomycota	Ustilaginomycotina	Exobasidiomycetes		
OTU20	Basidiomycota	Agaricomycotina	Tremellomycetes		
OTU3	Ascomycota	Pezizomycotina	Dothideomycetes	Dothideomycetidae	
OTU2	Ascomycota	Pezizomycotina	Eurotiomycetes	Eurotiomycetidae	
OTU16	Ascomycota	Pezizomycotina	Sordariomycetes	Hypocreomycetidae	
OTU23	Ascomycota	Pezizomycotina	Eurotiomycetes	Chaetothyriomycetidae	Chaetothyriales
OTU14	Ascomycota	Pezizomycotina	Eurotiomycetes	Chaetothyriomycetidae	Chaetothyriales
OTU17	Ascomycota	Pezizomycotina	Sordariomycetes	Hypocreomycetidae	Hypocreales
OTU1	Ascomycota	Pezizomycotina	Pezizomycetes		Pezizales
OTU7	Ascomycota	Pezizomycotina	Pezizomycetes		Pezizales
OTU10	Ascomycota	Pezizomycotina	Dothideomycetes	Pleosporomycetidae	Pleosporales
OTU11	Ascomycota	Pezizomycotina	Dothideomycetes	Pleosporomycetidae	Pleosporales
OTU24	Ascomycota	Pezizomycotina	Dothideomycetes	Pleosporomycetidae	Pleosporales
OTU4	Ascomycota	Pezizomycotina	Sordariomycetes	Xylariomycetidae	Xylariales
OTU9	Blastocladiomycota		Blastocladiomycetes		Blastocladiales
OTU12	Blastocladiomycota		Blastocladiomycetes		Blastocladiales

4. Higher-rank lineages information of each OTU

The final depth of taxonomy is underlined.

→ DI A (& , 2005).
· · · · · · · · · · · · · · · · · · ·
2008)
A
(1). <i>l</i> . (2008) 10

· · · · · · · · · · · · · · · · · · ·
) / · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
, EF4/. J
B EF4/EF3
(, 1999). A
· · · · · · · · · · · · · · · · · · ·
(31° D & . 4 2)
(> 99.5%
(
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
₩A
· · · · · · · · · · · · · · · · · · ·
(2013), 18 A
· · · · · · · · · · · · · · · · · · ·
BA

F . **2.** Phylogenetic tree based on V2–V3 region of fungal 18S rRNA gene sequences (c. 550 bp) built by maximum-likelihood method using K2 + G as model: maximum parsimony tree and neighbor-joining tree (Supporting Information, Fig. S1) provided similar topology structure. Bootstrap values (100 replicates) higher than 50% were shown. OTUs that were only found in seawater were marked with triangles. *Zoophagus insidians* was chosen as the outgroup.

<i>l.</i> , 2007; <i>l.</i> , 2012).	····)		. F ,	18	
· · · · · · · · · · · · · · ·	-	1. x	A		x
		100%	and the second	(、	3).

© 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved

Dominance of *Pezizomycotina* in *T. swinhoei* and *X. testudinaria*

and the second	A
e de la construcción de la construc	· · · · · ·
(, <i>l.</i> , 2006) ,	75%
(, 3),	
(2 10)	DA - DA -
	1 (B.
, 2009). F , 2,	3),
· · · · · · · · · · · · · · · · · · ·	
DA (6.8% . 25.5%). B	
6, 11, 16 – . . D A ,	
· · · · · · · · · · · · · · · · · · ·	× · · ·
C (D <i>l</i> , 2011; (B <i>l</i> , 2009).	1., 2013)

Comparison of fungal diversity between sponge holobionts and seawater

, D E				.	х, с. с. 1. – х.
(F.1).	1., 20	08). ≇A.	. ' ≜ A		,
, , , , , , , , , , , , , , , , , , ,	、 · · · · · · · · · · · · · · · · · · ·		- · · · · · · ·	1., 2	013).
D'A) · · ·	8, 2	21,	(2)
· · · · · · · · · · · · · · · · · · ·		(, · ·	3),		, ,

(- <i>l</i> , 2010). <i>l</i> (2012)
D B I. (2008) B I. (2009)
· · · · · · · · · · · · · · · · · · ·
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
· · · · · · · · · · · · · · · · · · ·
3 3 3 3 3 3 3 3 3 3
2012).
<i>I.</i> , 2012). , , , , , , , , , , , , , , , , , , ,
α − κ
(
- , , 2010) ((, , , , , , , , , , , , , , , , ,
(D'A <i>l.</i> , 1995 <i>l.</i> , 2000; <i>l.</i> , 2002; <i>l.</i> 2004).
(D <i>l.</i> , 2011; <i>l.</i> , 2013), -

.

Acknowledgements

D C (2013AA092901) F C (1 FC) (41176127). • • • • •

References

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , , D AD & (2009)
B M $(111: 540-547.$ B B D $A \& F$ $(2013) E$ E 7: 2061-2068. B $\&$ $(2000) C$ $A \land I$ E $(166: 4356-4360.$ C $A \land I$ $(2010) E$ $A \land I$ E $(1994) C$ $A-C,$ $E \& C,$ (1994) C $A-C,$ $E & C,(1994) C$ $A-C,$ $SA \land I E (2010) EA \land I E (1995) A A, A, A A A A A A A A A A$	
7: 2061–2068.	B, D, A & F (2013) E
7: 2061–2068. B & (2000) C $A I = I = I = I = I = I = I = I = I = I $	· · · · · · · · · · · · · · · · · · ·
$E = \begin{bmatrix} 1 & 66: 4356-4360. \\ C = \begin{bmatrix} 2 & 7: 335-336. \\ C = C & A & C & Ferry \\ (1994) C = A-C, \\ C = \begin{bmatrix} 59: 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 795 & 6344-6348. \\ C = \begin{bmatrix} 2 & 712 & 721 \\ C = \begin{bmatrix} 2 & 721 & 721 \\ C = \begin{bmatrix} 2 & $	11−2068. & (2000) C
C , , , , , , , , , , , , , , , , , , ,	/ 66 : 4356–4360.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , <i>l</i> . (2010) е
C C , A , C , E & C (1994) C A-C, E & C C = 59: 6344-6348. D'A , , , , , , , , A, D A & (1995) A A, E = 121-123. D B, A C & (2001) C = 167: 2932-2941. D B, , F & (2011) C = 1 - 1 - 11 C = 1 - 1 - 11 - 11 C = 1 - 1 - 11 - 11 C = 1 - 1 - 1	- 7: 335–336.
C = 59: 6344-6348. D'A , , , , A, D & (1995) A , , A, D E = 121-123. D B, -A ' C & (2001) - A ' C	C, A, C, E & C,) C A–C, , , , , , , , , , , , , , , , , , ,
D'A , , , , , , , , , , , , , , , A, D A, D A, D A, D A, D B A, D A, D B	. C 59 : 6344–6348.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, , , , , , , , , , , A, D C (1995) A A, ,
121–123. D' B, '-A ' C & (2001) A / E / 67: 2932–2941. D B, , F & (2011) C/ L / 1 / 1 / 1 1 / 2 / 291	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23. ´-A ´ C & (2001)
C/	- / A . A / E / 67: 2932–2941. , F & (2011)
/13-/21.	Cl

- C, , C, I (2014) A F C, F C, I (2014) A F C, F C, F C, I (2013) F C, F C, F C, F C, I C, I

62: 644–654.

Supporting Information

- Fig. S1. 2− 3 18 # A (. 550) Fig. S1.