end-to-end chromosome fusions and centromere deletions. The fusion of sixteen native linear chromosomes into a single chromosome results in marked changes to the global three-dimensional structure of the chromosome due to the loss of all centromere-associated inter-chromosomal interactions, most telomere-associated inter-chromosomal interactions and 67.4% of intra-chromosomal interactions. However, the single-chromosome and wild-type yeast cells have nearly identical transcriptome and similar phenome profiles. The giant single chromosome can support cell life, although this strain shows reduced growth across environments, competitiveness, gamete production and viability. This synthetic biology study demonstrates an approach to exploration of eukaryote evolution with respect to chromosome structure and function. Rationale S 1 1 2 2 S 1 1 2 S S S S ## omosomal 3D structures 1 S. erevisae 121 2 S 1 2 1 1 2 S S 1 S 1 1 2 S Transcriptome and phenome analysis 2 S 1 2 2 S S 1 S 1 2 2 S S 1 S 1 2 Fig. 4 Transcriptome and phenome analyses. a | | | | 2 3 | 5 1 | | | | |-----|---|-----|-----|-----|---|---------|--| | n | | 0 8 | | | | 0 | | | | | b | | | | | | | | | | 2 | | 1 | 0 001 | | | C 1 | | | | | - | | | | S 1 | | | c | | | S 1 | | | | | | | | | | | | | d | | | | 2 | S 1 | | | | | | | | | S 1 | | | | | | | | | 2 | | | | | | | | 2 | | | | | | | (| 0 | - | □ 01228 | Meiosis and spore viability 12 2 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 10 S 1 S 1 S 1 2 S 1 S 1 2 s s 1 S 1 S 1 2 S 1 Discussion S 1 2 S 1 S. erevisiae S 1 22 2 S 1 S 1 2 S. erevisiae 12 2 11 8 S. erevisiae² S 1 S 1 S. erevisiae 10 20 2 S 0 S 1 Online content S 28 \boxtimes 0 1 8 \boxtimes \boxtimes 1 Plasmid constructions. 28 ## **METHODS** | \$ 2
S. erevisae \$288
\$ 2
SN 2 | 1 S 2 2 20 S | S3 2
20 | | | |---|--|----------------------|--|--| | 20 | S
2 S
80 | S 2 2 1 S 1 2 | | | | S 2
CRISPR-Cas9 facili | tated chromosome fusion. 0 00 S. erevisae 2 | 1
200 | | | | | 0
S | | | | | S 2 | S
S | 0.
2
00 0
1 | | | | Telomere Southern | blot. S | 10 | | | 1 L 2 Extended Data Fig. 1 Theoretical XhoI digestion pattern of chromosome ends. 1 S 1 Extended Data Fig. 2 $\,$ De novo sequence comparison of BY4742 (light grey) and SY14 (dark grey) genomes. 2 S 1 S 1 Extended Data Fig. 4 3D structures of single chromosomes. Extended Data Fig. 5 Directional preference plots of SY6, SY13, and SY14 cells compared to BY4742 cells. 2 S 1 S 1 © 2018 Springer Nature Limited. All rights reserved. #### E tended Data Table 1 | Details of the creation of a single chromosome | east | Strain | Chromosomes
to fuse
(chr. length in
kb) | Newly fused
chromosome (+)
(chr. length in kb) | Newly deleted chromosome regions (RTel: right arm telomere sequence; LTel: left arm tel sequence) (Cen: centromere sequence; RS: repetitive sequence) | No. of
transformants
for
chromosome
fusion | Positive rate
of
chromosome
fusion | |--------|--|--|---|--|---| | SY0 | VII (1090), VIII
(560) | VII+VIII (1609) | VII: 5545-9584 (RS6), 1076068-1090940 (RTel, RS3);
VIII: 524501-541100 (RS1), 1-8217 (LTel), 105447-106013
(Cen)
V: 18067-23447 (RS11);
XV: 10454-13126 (RS9), 21791-30776 (RS10,14); | 100 | 1/3 | | SY1 | XIII (920), XII
(1080+1500) | XIII+XII
(1980+1500) | XIII: 917281-924431 (RTel, RS7), 268013-268803 (Cen);
XII: 1-14474 (LTel) | 26 | 1/3 | | SY2 | I (230), II (810) | I+II (1006) | l; 203183-230218 (RTel, RS1,2);
ll: 1-9089 (LTel), 237784-238794 (Cen) | 11 | 2/3 | | SY3 | VI (270), XIV
(780) | VI+XIV (1036) | VI: 269616-270161 (RTel), 148460-148774 (Cen);
XIV: 1-17790 (LTel, RS4) | 100 | 2/3 | | SY4 | XVI (950), V
(580) | XVI+V (1505) | XVI: 941976-948066 (RTel);
V: 1-8079 (LTel), 151829-152588 (Cen) | 143 | 4/8 | | SY5 | IX (440), X (750) | IX+X (1160) | IX:436361-439888 (RTel), 355607-356006 (Cen);
X:1-21750 (LTel, RS9,10,15) | 94 | 1/4 | | SY6 | III (320), IV
(1530) | III+IV (1826) | III:313621-316620 (RTel), 114297-114969 (Cen);
IV:1-19188 (LTel, RS12) | 49 | 2/4 | | SY7 | XVI-V (1505),
VI-XIV (1036) | XVI-V+VI-XIV
(2523) | V:569325-576874 (RTel);
VI:1-8380 (LTel);
XIV:628734-629219 (Cen) | 130 | 1/5 | | SY8 | XV (1090), XI
(670) | XV+XI (1725) | XV:1073966-1091291 (RTel, RS8,7);
XI: 439551-440264 (Cen), 1-3182 (LTel) | 84 | 3/3 | | SY9 | VII-VIII (1609),
IX-X (1160) | VII-VIII+IX-X (2747) | VIII:552000-562643 (RTeI);
IX:1-11214 (LTeI);
X:436229-436425 (Cen) | 30 | 2/5 | | QV10 | I-II (1006), III-IV | I.HaIII.IV /2824\ | 1:151470-1517 | 5 | 2/4 | The 'Strain' column lists the strain names, and the number in parentheses indicates the size of the native or fused chromosome in kilobase (kb). An orange plus indicates a fusion event; a dash between two chromosomes means that the fusion already occurred. 'Newly deleted chromosome regions' marks the deleted regions in the corresponding chromosomes; Rtel and Ltel in blue indicate the right arm and left arm of the corresponding telomere sequences, respectively; Cen in red indicates the corresponding centromere sequence; and RS represents repetitive sequences deleted in the corresponding chromosomes. The numbers for each region are referred from the S. cerevisiae S288C genome (http://www.yeastgenome.org/). # E tended Data Table 2 \mid Information regarding long repeat sequences near chromosome ends | Types of | Сору | Location on ch | romosomes (bp) | |---------------------|--------|---|---------------------------------------| | repeat
sequences | number | RSs to be deleted | Retained RSs | | RS1 | 3 | I: 2034 5-219229;
VIII: 525437-
539926 | I:13089-27923 | | RS2 | 2 | 1:219230-229411 | VIII: 539927-543610
549638- 556001 | | RS3 | 2 | VII: 1076381-
1083886 | II: 805133-812631 | | RS4 | 2 | XIV: 7429-15942 | VI: 5531-14039 | | RS5 | 2 | XI: 658572-665429 | III: 4327-11225 | | RS6 | 2 | VII: 6223-9584 | IX: 430983-434367 | | RS7 | 3 | XIII: 917474-
923540;
XV: 1078061-
1083736 | XVI: 7409-13083 | | RS8 | 2 | XV: 1073988-
1078544 | XVI: 12601-17099 | | RS9 | 3 | XV: 11053-13126;
X: 8269-10330 | IX: 8286-10347 | | RS10 | 3 | XV:22397-27006;
X: 16639-21229 | IX:16656-21250 | | RS11 | 2 | V: 18751-23447 | XIV: 772693-777126 | | RS12 | 2 | IV: 905-18681 | X: 727164-744901 | | RS13 | 2 | XII: 1059296- | III: 303903-308 314 | | 荣814 | 2 | XV: 27007-30776 | IX: 21251-25254 | | RS15 | 2 | X:10331-16638 | DX: 10348-16655 | This Table lists 15 types of long (2 kb) repeat sequences near telomeres, which have two or three copies. Only one copy of each long repeat sequence was retained, and the redundant copies were deleted in the SY14 strain. During the generation of the SY14 strain, six long repeats marked in red (that is, VII: 6223–9584 (RS6), VIII: 525437–539926 (RS1), V: 18751–23447 (RS11), XV: 11053–13126 (RS9), XV: 22397–27006 (RS10), and XV: 27007–30776 (RS14)), which are distal to telomeres, were deleted by two rounds of CRISPR–Cas9-mediated PCR targeting. The remaining 13 long repeats were deleted during chromosomal end-to-end fusions. ### E tended Data Table 3 | SNPs and indels confirmed by re-sequencing | Ref- | | | Mumin | a sequencing | Sange | r sequencing | | | | | | | | |------------------|----------|------------------|---|--------------|---------|--------------|------------------|---------------------------|--------------|--------------------|----------------------------------|---|---| | romosome | Ref-Loci | Ref base | wr | SY14 | wr | SY14 | Affected
Gene | Variation Loci
in Gene | Ref
Codon | Variation
Codon | Variation Type | Mutation in
functional
domain? (Y/N) | Null g | | 11 | 9136* | G | G | A | G | A | ** | #1 | + | 100 | - | - | | | m | 151645 | G | G | A | G | A | - | 75 | .77 | -7 | | 7 | 77 | | x | 517916 | G | G | 7 | G | 7 | ~ | - | - | | - | -7 | - | | xv | 161691 | c | c | G | c | G | - | 23 | 2 | 12 | 12 | - | - | | 1X | 145512 | G | G | 1 | G | T | Nup159 | 3198 | CTC>L | CTA->L | synonymous | i.e. | - | | # | 447712 | Α | Α. | τ. | A | τ. | S#2 | 4 | AGTOS | TGT⇒C | non-
synonymous | N | 2 | | VR | 775929 | c | c | A | c | A | Skn1 | 737 | GCT->A | GAT->D | non-
synonymous | N | - | | xv | 454309 | С | c | A | c | A | Vps5 | 542 | ACA->T | ааа⇒к | non-
synonymous | N | - | | x | 148653 | G | G | A. | 6 | A | Yaki | 1838 | TCT⊹8 | По€ | non-
synonymous | Y,
Mutation
within kinase
domain | Null m
grows in
has inc
fitnes
lifesp
sensit
DNA do
Null m | | ХI | 594128 | с | c | Ą | c | A | Nup133 | 1304 | TCT->S | тат-эч | non-
synonymous | Y. Muta Story within WD40/YVTN repeat-like- containing domain | abnon
elongat
morphi
decreas
dea
abno
chem
comp | | XIV | 225122 | A | ٨ | G | A | G | Sqs1 | 1978 | TGG⇔W | CGG⇒R | non-
synonymous | Y. Mutation
within R3H
domain | Null m
has dec
or incr
compe
fitness
on the
condi | | Ref-
romosome | Ref-Loci | Ref base | ALTbase | Refilen | ALT len | | equencing | Sanger sequ | _ | | | lutation in | . 7 | | 999 | 1000 | 111111 | (1)(1)(1) | | | | 5Y14 | W | \$114 | | Variation Loci
009900003871VV | 0000888000/ | | | | | | 00000
80000000 | * | 8800 | 8811 | = | 88 U | | х . | | 100 | | | | ans 8887 | | | 000 | 0008 | XIII | ■ 00 | ≋ Ⅱ | | | • • | | | | | | m | Ш | п | W00 | 2011 | ■ ?? | ₩ X | | | | | II | | | | | www. | П |)0000 | 8811 | ■ 00 | 8 8 8 | в х | X 1 | • • |)00 | 00 | | | | w <mark>e</mark> | Ū. | μ
 | M | | ■II | 88 U | | | | 100 | 00 | | 9000 |)))) | ₩ | • | X | ×. | XXX | ∎ĬĬ | 8 (| • | | | W | W | | i wi | | 1000000011100 | u III III III III III III III III III I | 800 | 888 | () | u <mark>u</mark> | 8 1 | , m | u w | 900 W | | | a, SNPs. b, Indels. ### E tended Data Table 4 | Differentiall e pressed genes in SY14 compared to BY4742 cells | genelD | GeneSym | bol — groot | | EU/12 | Express | | 1109.5 | 1000 0 | log-FC | Pvalue | FDR | | Notes. | | |----------------|---|---------------------------------------|---|--|-----------------------------------|-----------------------------------|---------------------------------------|---------------------------------------|---------------------------------|--|---|--|--|--| | | tjacent gener | 311 | | 5Y14-2 | 5Y14-3 | WT-1 | WT-2 | WT-3 | 11.17940504 | 001110111 | . (2000) | | 104075 | | | 855848 | ERR2 | 0. | | 0 | 0.04 | 2.08 | 1.52 | 2.05 | -7.55 | 7.67E-13 | 6.78E-11 | Chr XVI-L | | | | 855849 | HSP32 | | | 0.1 | 0 | 2.86 | 2.6 | 2.57 | -6.83 | 2.83E-09 | 2.03E-07 | Chr XVI-L | | | | 855850 | FEX2 | 1. | 11 | 4.51 | 2.73 | 21.54 | 21.83 | 23.7 | -3.03 | 1.64E-12 | 1.38E-10 | Fourth gen | e near XVI-L | | | 855852 | YPL277 | C 13 | 97 | 2.82 | 2.09 | 7.11 | 5.57 | 8.61 | -1.66 | 0.000071 | 0.004003 | Sixth gene | near XVI-L. | | | 853625 | мрнз | 3. | 79 | 7.58 | 7.24 | 19.12 | 18.21 | 19.61 | -1.65 | 2.78E-05 | 0.001666 | Second ger | ne near X-R. | | | 854634 | VTH1 | 25 | 96 | 23.78 | 29.85 | 8.71 | 8.08 | 11.03 | 1.47 | 0.000126 | 0.006776 | Second ger | te near IX-L, first gene was deleted in SY14. | | | 851230 | SE01 | 6. | 79 | 7.37 | 7.27 | 2.72 | 2.02 | 2.69 | 1.49 | 0.000254 | 0.013032 | Third gene
SY14. | near I-L, the first two genes were deleted in | | | 854002 | YOL162 | W 25 | 86 | 21.03 | 21.94 | 10,17 | 6.31 | 5.28 | 1.64 | 9.25E-05 | 0.005119 | Fourth gen | e near XV-L. | | | 854001 | YOL163 | | | 35.02 | 31.7 | 14.94 | 7.6 | 8.11 | 1.82 | 1.53E-05 | 0.000936 | | e near XV-L | | | | | | | | | | | | | | 1503335550 | STATE OF THE PARTY | e near VI-L. first gene was deleted in SY14. | | | 850486 | THIS | 4.0 | 81 | 5.13 | 4.56 | 1.51 | 0.14 | 1.93 | 1,93 | 3.53E-05 | 0.002072 | | e near VII-R, first gene was deleted in S114. | | | 853207 | MAL11 | 59 | 06 | 55.38 | 56.36 | 8.7 | 9,65 | 6.49 | 2.75 | 1.04E-11 | 8.32E | SY14. | e riear vii-rs, mat timee genes were deleted in | | | 850618 | YFR057
response | W 22 | 58 | 20.31 | 18.16 | 3.13 | 1.46 | 0.96 | 3.40 | 1.64E-10 | 1. | | ene near VI-R. | | | 8523 | | SP26 | 60.43 | 56.15 | 60.09 | 24.96 | 18.59 | 20.85 | 1,44 | 0.00026 | 0.013 | 364 Small | heat shock protein (sHSP) with chaperone a | | | 8547 | 1744 F | NR3 | 15,67 | 14.26 | 15.89 | 6.2 | 4.95 | 5.09 | 1.46 | 0.00018 | 0.005 | 714 DNA d | isoform of large subunit of ribonucleotide-
sphate reductase; regulated by DNA replicati
lamage checkpoint pathways, induced by DN
je and replication stress. | | | 8533 | 1326 6 | CA3 | 85.44 | 90.16 | 83.51 | 32.42 | 31 | 28.38 | 1,47 | 0.00014 | 0.007 | | n involved in mitochondrion organization; Ir
SLN1-SKN7 osmotic stress signaling pathy | | | 8503 | 1331 F | BN1 | 30.17 | 22.64 | 28.11 | 10,71 | 6.16 | 8,97 | 1.63 | 9.49E-0 | 0.000 | 147 Simila
increa | r to bacterial nitroreductases; protein abun
ses in response to DN 100 Surformun | | | | 855932 | OYES | | 01 6 | .63 9. | 95 | 1.71 2 | 2.57 2 | 1.83 1 | 1.69 7.0 | BE-05 | 0.004003 III | eved NADPH oxido Ta se containing
conomicleotide (FMN), has potential roles in
tress response and programmed cell death | | | | 854944 | HUGI | 471 | k.95 100 | 14.46 86 | 0.2 | 381.3 25 | 51.63 16 | 7.35 1 | 1.82 0.0 | 0048 | 0.023808 R | ibonucleotide reductase inhibitor; transcrip
iduced by genotoxic stress and by activation
ad\$1p pathway; protein abundance increase
esponse to DNA replication stress.
lasma membrane protein involved in mainta | 850532 | HSP12 | 21 | 1.2 22 | 3.37 18 | 1.79 | 62.8 5 | 14.47 46 | L.85 1 | 1.98 1.5 | 5E-06 | 0.000102 0
8
1 | embrane organization; involved in maintain
ganization during stress conditions; induc-
hock, oxidative stress, osmostress,; protein
screased in response to DNA replication str | | | | 855132 | HSP12 | | | | 1.79 | | | | | 5E-06
6E-33 | 0.000102 0
8
10
3 | sembrane organization; involved in maintain
rganization during stress conditions; induce
hock, exidative stress, comostress; protein
creased in response to DNA replication stru-
ubunit of telomeric Ku complex (Yku78p-Yk
worked in telomere length maintanance, stress
ossion effect, relocales to sit
creame. | | | ii
le- | 856132 | | | | | | | | | | | 0.000102 0
8
10
3 | rembrane organization; involved in maintain
riganization during stress conditions; induc-
hock, oxidative stress, gemostress; protein
creased in response to DNA replication stru-
ubunit of telomeric Ku complex (YNu70p-YN
wolved in telomere length maintaniance, str | | | | 855132
Others | YKUBO | 12 | .19 1 | 2.28 1 | 1.7 | 0 0 | 0.04 6 | 0.1 7 | 7.45 1.0 | 6E-33 | 0.000102 o
8
10
5
1.97E-31 te | pembrane organization; involved in maintain
rganization during stress conditions; induc-
tock, oxidative stress, osmostress, protein-
creased in response to DNA replication str-
ubunit of telomeric Ku complex (Yku76p-Yi | | | 1.
1.
e- | 855132
Others
916493 | YKU80 | 12 | .19 12
82.96 | 93,16 | 86,11 | 0 0 | 0.06 6 | 16,74 | 7.65 1.0
2.54 | 6E-33
1.53E-10 | 0.000102 0
8
8
8
1.97E-31 16
8 | sembrane organization; involved in maintain
rganization during stress conditions; induc-
thock, oxidative stress, osmostress, protein-
creased in response to DNA replication str-
ubunit of telomeric Nu complex (YNA79-YI | | | 1 | 855132
Others
916493
85456 | YKU80 | 12
137-1
T3 | .19 1 | 93.16
230.81 | 86.11
526.59 | 13.39
265.15 | 0.06 ¢ | 0.1 7
16.74
154.28 | 7.65 1.0
2.54
1.25 | 1.53E-10
0.00102 | 0.000102 0
8
8
8
8
1.97E-21 to
9
1.13E-00
0.04968 | sembrane organization; involved in maintal
granization during stress conditions; induc-
nock, oxidative stress, semostress, protein-
creased in response to DNA replication stre-
ubunit of telomeric Ku complex (Yku76y-Yi
wolved in belomere length maintenance, stress of
lossbon effect; relocates to sit
stresses. Seavage to promote nonhomolo-
during DSB repair. | | | 1 | 855132
Others
916493 | YKU80 | 12 | .19 12
82.96 | 93,16 | 86,11 | 0 0 | 0.06 6 | 16,74 | 7.65 1.0
2.54 | 6E-33
1.53E-10 | 0.000102 0
8
8
8
1.97E-31 16
8 | presentate organization; involved in maintain regarization during stress conditions; inductions, coldutive stress, esmostress, proteincreased in response to DNA replication strubunit of telomeric Ku complex (Yku/Tōp-Yimohed in belomere length maintanance, strubunit of section effect; relocates to situation length seawage to promote nonhomolo during DSB repair. 3 | | | 1.
1.
e- | 855132
Others
916493
85456 | YKU80 | 12
137-1
T3 | 82.96
489.5 | 93.16
230.81 | 86.11
526.59 | 13.39
265.15 | 0.06 ¢ | 0.1 7
16.74
154.28 | 7.65 1.0
2.54
1.25 | 1.53E-10
0.00102 | 1.13E-00
0.000142 | sembrane organization; involved in maintain ganization during stress conditions; inductions, colditions; inductions, colditions; inductions, colditions are sense to DNA replication stress, processor and complex (YMO79-Ymolved in telemere length maintenance, stress of the colditions | | | e-
ining | 855132
Others
916493
85456
85229
85400 | YKU80 RDM FI YBR0 | 127-1
T3
12W-A | 82.96
489.5
20.41
15.64 | 93.16
230.81
15.07
15.33 | 86,11
526,59
15,39
26,41 | 13.39
265.15
5.28
1.1 | 13.71
96.71
2.1
3.52 | 16.74
154.28
5.84
1.28 | 7.65 1.0
2.54
1.25
1.91
3.23 | 1.53E-10
0.00102
2.22E-06
9.57E-07 | 1.13E-00
0.00014:
6.39E-00 | sembrane organization; involved in maintal
granization during stress conditions; induc-
nock, exidative stress, semostress, protein-
cock, exidative stress, semostress, protein-
terior stress, protein-
terior stress, protein-
terior stress, protein-
terior stress, protein-
terior stress, protein-
during DSB repair. 3 155 ribosomal RNA (155 rRNA) transcri-
tion stress, protein-
stress, protein-
stress, protein-
siant stress, protein-
siant stress, protein-
siant stress, protein-
s, cerevisies strains. | | | 1 | Others
916493
85456
85229
85400
85185 | YKU80 RDM FI YBR0 YOR2 | 12
137-1
13
12W-A
160W
61W-A | 82.96
489.5
20.41
15.64
0.24 | 93.16
230.81
15.07
15.33 | 86.11
526.59
15.39
26.41 | 13.39
285.15
5.28
1.1
1.2 | 13.71
96.71
2.1
3.52
1.94 | 16.74
154.28
5.84
1.28 | 2.54
1.25
1.91
3.23
-3.57 | 1.53E-10
0.00102
2.22E-06
9.57E-07
3.33E-06 | 1.13E-00
0.000142
1.37E-31
1.13E-00
0.04968
0.00014:
6.39E-00 | sembrane organization; involved in maintal riganization during stress conditions; industriant riganization during stress; conditions; protein controls, oxidative stress, osenostress; protein reasons to DNA replication stress; protein controls, and the control oxidative stress; consistent and controls to stress; s | | | e-
ining | 855132
Others
916493
85456
85229
85400 | YKU80 RDM FI YBR0 YOR2 | 127-1
T3
12W-A | 82.96
489.5
20.41
15.64 | 93.16
230.81
15.07
15.33 | 86,11
526,59
15,39
26,41 | 13.39
265.15
5.28
1.1 | 13.71
96.71
2.1
3.52 | 16.74
154.28
5.84
1.28 | 7.65 1.0
2.54
1.25
1.91
3.23 | 1.53E-10
0.00102
2.22E-06
9.57E-07 | 1.13E-00
0.00014:
6.39E-00 | sembrane organization; involved in maintain ganization during stress conditions; inductions, coldutive stress, osenostress, proteincreased in response to DNA replication stress, proteincreased in response to DNA replication stress, and the stress of | | | t-
ining | Others
916493
85456
85229
85400
85185 | YKUBO I RDM I FI I YBRO I YOL I YOR2 | 12
137-1
13
12W-A
160W
61W-A | 82.96
489.5
20.41
15.64
0.24 | 93.16
230.81
15.07
15.33 | 86.11
526.59
15.39
26.41 | 13.39
285.15
5.28
1.1
1.2 | 13.71
96.71
2.1
3.52
1.94 | 16.74
154.28
5.84
1.28 | 2.54
1.25
1.91
3.23
-3.57 | 1.53E-10
0.00102
2.22E-06
9.57E-07
3.33E-06 | 1.13E-00
0.000142
1.37E-31
1.13E-00
0.04968
0.00014:
6.39E-00 | sembrane organization; involved in maintain ganization during stress conditions; inductions, cividative stress, osenostress, proteincreased in response to DNA registration strubunit of telomeric Ku complex (YM/79-YI molved in belomere length maintenance, at telomere length maintenance, at telomere length maintenance and seavage to promote nonhomolo during DSB repair. 3 | | Sample size n 3. Exact negative binomial two-sided test was used to generate P values. Benjamini and Hochberg's algorithm was used to control the FDR. # natureresearch e . a e a e e ea c . e . . e e e . c. е се.с. еса <u>e e ee</u> a e <u>. . .a . .c</u> le...e.a..aeeeac..c.e_ee____ a, ca aa e e e a. daaa eaee. e.c. a e... e ae ee eeea .ca.. e .eee_aeee_a e_ . e . ec .. ea.cae e eeeae.e. e $\square \square$ ec. .. a c. a a e e e ec...aa ...c.ec.._cae..a.aa e...ec.a.. ec. ... e a .c .c . <u>ce a e e c</u> e ea . . e a .ce . a e e e e ... c. e .c. e .a. e a .ce . a e e e ... c. e .c. e .e.e._eea.ce__ .c.ece.ea_eec.e_ee.aa_e.e $\square | \boxtimes \square$. Lae.a a a \square . . . a... . ec...ce. ... a a ... ca. ... e a \square e ... X . e.ee. a aea ce .c. a. a. <u>aaa. . c. ec. e</u> ae a e aac.ec.. aaaa . ecaecee...ac eeeac eece. eea ea eaaa ecaecae ea ea a . e . . a . | a a | |---| | a c c ea aaaaa aee . aee e e a., eea .ca e .ce e a aea .ca e aae .c e a aea .ca e aaa a | | e e e e c aaa e e e e e e e e e e e e e | | le eclic e l | | ea e eec e e e ea c . a ee ea eaa e ec e. e a e ec | | e c.e ce a . c.a c.e ce a e e a c.e ce | | . a e e e ce c. e . c e . a ec . ee <u>a ec a . ce e a a</u> | | Le Cle Ce e l | | .e., c, e, ee e e e, c, e, ea, e | | a e e e e e e e e e e e e e e e e e e e | | | | a a e c | | e .ca a e a e .ca e e cce | | aa ecea e . ec e ea e. e . c e a a . c . e | | e c ea e . e c e ea . e . e . e . e . e . e . e | | e ec.cae.a ea e. | | | | ae.a e e. e a ee . | | a | | a a e | | e | | e ee ce ce ce | | . c . a ca a 1 a c . a 12 a a e ec e 13 c a e e . e e e e 2 | | 1 a a _ caa 11 _ e c. a 12 a a e ec e ce e |