ScienceAdvances
 \IAAAS

advances.sciencemag.org/cgi/content/full/4/1/eaaq1407/DC1

Supplementary Materials for

Complete enzyme set for chlorophyll biosynthesis in Escherichia coli

Guangyu E. Chen, Daniel P. Canniffe, Samuel F. H. Barnett, Sarah Hollingshead, Amanda A. Brindley, Cvetelin Vasilev, Donald A. Bryant, C. Neil Hunter

Published 26 January 2018, Sci. Adv. 4, eaaq1407 (2018)
DOI: 10.1126/sciadv.aaq1407

This PDF file includes:

- fig. S1. Deletions of the bchE and ccoP genes in Rba. capsulatus.
- fig. S2. Diagram of the link-and-lock method for plasmid construction.
- fig. S3. The production of DV PChlide a in the IA and IM-cycI-ycf54 strains.
- fig. S4. The light-dependent production of MV Chlide a in the ID strain.
- fig. S5. The production of GG-Chl a in the DE/IG strain and of Chl a in the DE/BoP/IG strain.
- fig. S6. Verification of the production of Chl a in E. coli by LC-MS.
- fig. S7. Western blot analysis of the BoWSCP-His ${ }_{10}$ expression in the DE/BoP/IG strain.
- table S1. List of genes used to assemble the Chl biosynthesis pathway in E. coli.
- table S2. Strains and plasmids described in this study.
- table S3. Oligonucleotide primers used in this study.

fig. S1. Deletions of the $\boldsymbol{b c h} \boldsymbol{E}$ and $\boldsymbol{c c o P}$ genes in Rbac capsulatus. (A) Deletion of the bchE $b c h E=1046 \mathrm{bp} .(\mathbf{B})$ Deletion of
the $c c o P$ $c c o P=1164 \mathrm{bp}$. Cyan:
bacteriochlorophyll biosynthesis genes; magenta: assembly factors; yellow: regulatory genes; pink: cytochromes. Agarose gels of colony PCR products confirming the gene deletion are also shown.

fig. S2. Diagram of the link-and-lock method for plasmid construction. An SpeI site was engineered to the pET3a vector to allow link and lock cloning. Here shows consecutive cloning of 3 genes as an example. Additional genes can be added using the same methodology. Genes to be cloned were first ligated into the NdeI/SpeI sites of the modified pET3a vector, resulting in the pET3a-A, pET3a-B, and pET3a-C plasmids. The pET3a-A plasmid serves as the master vector and is cut with SpeI/HindIII. The geneB fragment serves as the insert and is cut out from the pET3a-B plasmid with XbaI/HindIII. As the SpeI enzyme shares compatible cohesive ends with the XbaI enzyme, these two sites are eliminated upon ligation. The resulting pET3a-AB plasmid contains only one SpeI site. For the construction of the pET3a-ABC plasmid, the $\mathrm{pET} 3 \mathrm{a}-\mathrm{AB}$ plasmid serves as the master vector and the gene C fragment cut from the $\mathrm{pET} 3 \mathrm{a}-\mathrm{C}$ plasmid serves as the insert. RBS, ribosome binding site.

fig. S3. The production of DV PChlide a in the IA and IM-cycI-ycf54 strains. A supplementary figure to Fig. 3C. Pigment accumulation in described E. coli strains was analyzed by HPLC with elution profiles monitored by absorbance at 440 nm . The in vivo activity of the Synechocystis cyclase is demonstrated by the accumulation of DV PChlide a in the IM-cycI-ycf54 strain. The lack of alignment of the major elution peak of IM-cycI$y c f 54$ with the other elution profiles arises from the use of a different HPLC column used to analyze the IM-cycI-ycf54 sample. However, the diagnostic absorption of DV PChlide a shown in the inset, recorded for the major elution peak of the IM-cycI-ycf54 sample, shows that the addition of cycI-ycf54 to the IM construct confers cyclase activity on the E. coli strain.

fig. S4. The light-dependent production of MV Chlide a in the ID strain. A supplementary figure to Fig. 3D. Pigment accumulation in described E. coli strains was analyzed by HPLC with elution profiles monitored by absorbance at 440 nm (shown in black) and 665 nm (shown in blue).

fig. S5. The production of GG-Chl a in the DE/IG strain and of Chl a in the DE/BoP/IG strain. A supplementary figure to Fig. 3E. Pigment accumulation in described E. coli strains was analyzed by HPLC with elution profiles monitored by absorbance at 665 nm .

fig. S6. Verification of the production of Chl a in E. coli by LC-MS. The pigment extract from the DE/BoP/IG strain and the Chl a standard was analyzed. Mass spectra of the dominant peak present in the elution profiles are shown.

fig. S7. Western blot analysis of the BoWSCP-His10 expression in the DE/BoP/IG strain. Soluble fractions isolated from E. coli cell lysates by centrifugation, were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Resolved proteins were transferred onto a polyvinylidene fluoride membrane for immunodetection. The membrane was incubated with an anti-6-His primary antibody (Bethyl), and then with a secondary antibody conjugated with horseradish peroxidase (Sigma-Aldrich). The predicted molecular weight of the BoWSCP-His ${ }_{10}$ protein is 20.8 kDa .
table S1. List of genes used to assemble the Chl biosynthesis pathway in E. coli.

Gene	Locus	Organism	Annotation
chlI	slr1030	Synechocystis sp. PCC 6803	I subunit of magnesium chelatase
chlD	slr1777	Synechocystis sp. PCC 6803	D subunit of magnesium chelatase
chlH	slr1055	Synechocystis sp. PCC 6803	H subunit of magnesium chelatase
gun4	sl10558	Synechocystis sp. PCC 6803	porphyrin-binding protein that enhances magnesium chelatase
chlM	slr0525	Synechocystis sp. PCC 6803	magnesium-protoporphyrin IX methyltransferase
acsF	RGE_33550	Rubrivivax gelatinosus IL144	O O-dependent magnesium-protoporphyrin IX monomethyl
		ester cyclase	
por	slr0506	Synechocystis sp. PCC 6803	light-dependent protochlorophyllide oxidoreductase
$b c i B$	slr1923	Synechocystis sp. PCC 6803	ferredoxin-dependent 8-vinyl reductase
chlP	sll1091	Synechocystis sp. PCC 6803	geranylgeranyl reductase
chlG	slr0056	Synechocystis sp. PCC 6803	chlorophyll a synthase
$d x s$	b0420	Escherichia coli	1-deoxy-D-xylulose-5-phosphate synthase
crtE	RGE_33730	Rubrivivax gelatinosus IL144	geranylgeranyl pyrophosphate synthase

table S2. Strains and plasmids described in this study. *Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Japan. Institute of Microbiology, Department of Phototrophic Microorganisms, , Czech Republic. Indiana University, USA. ${ }^{\S}$ Department of Biochemistry, University of Oxford, UK.

Strain/Plasmid	Characteristics	Source
E.coli		
JM109	Cloning strain for plasmid construction	Promega
S17-1	Conjugation strain for transfer of plasmid to Rba. capsulatus	(37)
C43(DE3)	Expression strain for in vivo assay and assembly of chlorophyll biosynthesis pathway	(11)
$\underline{\text { Rvi. gelatinosus }}$		
WT	IL144	S. Nagashima*
$b c h E$ acsF	Unmarked deletion of the bchE and acsF genes in WT	
Synechocystis		

table S3. Oligonucleotide primers used in this study.

Primer	Sequance ($5^{\prime}-3^{\prime}$)
bchEUpXbaIF	GCTCTAGAGGAGCTGATCCCGCCCTTCC
bchEUpR	GCCGTCACTCCTTCTTATTCGCGCATGGCTGACCCTCC
bchEDownF	GGAGGGTCAGCCATGCGCGAATAAGAAGGAGTGACGGC
bchEDownHindIIIR	GAGTCTAAGCTTTCGACCCGGAACCGC
bchEScreenF	GGAATAGCCTTTTTCCGGTGC
bchEScreenR	GGTTGTCATCGATGCGGAAG
ccoPUpXbaIF	GAGTCTTCTAGAGCTATCTGGCCAATGTGCCGC
ccoPUpR	GATCCGTTTGGCTGTTACTGGCTCATCTCCACGCCTCCT
ccoPDownF	AGGAGGCGTGGAGATGAGCCAGTAACAGCCAAACGGATC
ccoPDownHindIIIR	GAGTCTAAGCTTGCCAGATCTCGAGCCCGAAGA
ccoPScreenF	GCAATCGGTGGTGCCGGAATC
ccoPScreenR	CCAAGCCCGGCCATGATCAGA
acsFremoveBgliIF	GATCACCAACGAGATATCCAAGCAGGT
acsFremoveBgIIIR	ACCTGCTTGGATATCTCGTTGGTGATC
acsFBglIIF	GAGTCTAGATCTATGCTCGCGACCCCGACGAT
acsFNotIR	GAGTCTGCGGCCGCTCACCATGCCGGGGCCATGC
acsFNdeIF	CGCCATATGCTCGCGACCCCGACGATCGAATC
acsFSpeIBamHIR	GCCGGATCCACTAGTTCACCATGCCGGGGCCATG
chlIremoveXbaIF	AAAGATCCTCTGGAGTCCATTGATTCC
chlIremoveXbaIR	AATCAATGGACTCCAGAGGATCTTTCC
chlIremoveHindIIIF	TTGTCGATGAGGCTTAACGTCG
chlIremoveHindIIIR	ACGTTAAGCCTCATCGACAACG
pETaddSpeIF	ATCCGGCTACTAGTAAAGCCCGAAAGGAAGC
pETaddSpeIR	TTCCTTTCGGGCTTTACTAGTAGCCGGATCC
gun4NdeIF	TCCATATGTCTGATAATTTGACC
gun4SpeIR	TCACTAGTTTACCAACCGTATTGGGACC
gun4removeXbaIF	AAACCCTCCGGAACCTAGAACAGG
gun4removeXbaIR	TTCCTGTTCTAGGTTCCGGAGGGTTTGG
gun4removeHindIIIF	AAGAATTTACCAAACTTTGGCCGAAAATTGG
gun4removeHindIIIR	AATTTTCGGCCAAAGTTTGGTAAATTCTTTTCC
chlMNdeIF	GCGCATATGACCAACGCCGCCCTAGACG
chlMSpeIBamHIR	GCCGGATCCACTAGTTAAGAGCGCACCGCCTCTAAAATACG
porNdeIF	GCCCATATGGAACAACCGATGAAACCCACGG
porSpeIBamHIR	GCCGGATCCACTAGTCTAAACCAGACCCACTAACTTTTC
porremoveHindIIIF	ATACGGAGCTAAGGCCTTAATTGAC
porremoveHindIIIR	GTCAATTAAAGCCTTAGCTCCGTAT
dvrNdeIF	GCGCATATGACCGTTCCTGCCCCCCACC
dvrSpeIBamHIR	GCGGGATCCACTAGTTATTGCTGGGGAAGTTTATACTGC
dvrremoveSpeIF	GGAAACTACTAGCAGATCGCCAGAAACG
dvrremoveSpeIR	CGTTTCTGGCGATCTGCTAGTAGTTTCC
chlGNdeIF	GCGCATATGTCTGACACACAAAATACC
chlGSpeIBamHIR	GCCGGATCCACTAGTCAAATCCCCGCATGGCCTAGG
chlPNdeIF	GCGCATATGGTATTACGGGTAGCAGTCG
chIPSpeIBamHIR	GCCGGATCCACTAGTTAAGGGGCTAAAGCGTTACC
chIPXhoIR	GGAACTCGAGTTAAGGGGCTAAAGCGTTACCC
dxsNcoIF	GGCCCATGGAGTTTTGATATTGCCAAAT
dxsHindIIIR	GGCAAGCTTTTATGCCAGCCAGGCCTTGATT
dxsremoveHindIII1R	GAAGAGTACAGCTTACCGGAAA
dxsremoveHindIII1F	TTTCCGGTAAGCTGTACTCTTC
dxsremoveHindIII2R	CAGGACCGGCAGCTTTTGAATCG
dxsremoveHindIII2F	CGATTCAAAAGCTGCCGGTCCTG
crtENdeIF	TCTCATATGAACACGATGACTCGCATCGA
crtEXhoIR	GGCCTCGAGTCAAGCGGTCTGGGTCGGAG
cycINdeIF	GCGCATATGGTTAATACCCTCGAAAAGCCCGGAT
cycISpeIBamHIR	GCGGGATCCACTAGTTAGCGCACAGCTCCAGCCAACTGA
ycf54NdeIF	GCGCATATGGCTACCTATTATTATGCTTTGGCAAG
ycf54SpeIBamHIR	GCGGGATCCACTAGTCTAATCCAGGGATGCAAGGGGGTC

