Supporting Information

Chen et al. 10.1073/pnas. 1701687114

Fig. S1. Amino acid sequence alignments of known AcsF proteins. Sequences are those from Rvi. gelatinosus (AcsF), Synechocystis (Cycl), C. reinhardtii (CRD1), A. thaliana (CHL27), and Rba. sphaeroides (Rsp_0294; abbreviated as 0294). Conserved, highly similar, and similar residues are highlighted in black, dark gray, and light gray, respectively. The putative diiron center ligands are marked by red diamonds.

Fig. S2. Genetic knockouts and replacements in Rvi. gelatinosus. (A) Depiction of the deletion of bchE (Left), confirmed by colony PCR (Right). (B) Depiction of deletion of $a c s F$, and subsequent integration of foreign genes at the acsF locus, under control of the native promoter (Upper), confirmed by colony PCR (Lower). The regions subjected to genetic manipulation are depicted in proportion to the scale bar. ORFs are represented as colored filled rectangles, within which the arrow indicates the direction of transcription. Crt, carotenoid biosynthesis; RC\&LHC, reaction center and light-harvesting complexes.

Fig. S3. Deletion of rsp_6110 in Rba. sphaeroides. Diagram depicting deletion of rsp_6110 (Left), and confirmation by colony PCR (Right).

Fig. S4. Construction and phenotypic analysis of Rvi. gelatinosus mutant expressing bciE and acsF from Rba. sphaeroides. (A) Diagram depicting integration of bciE and acsF from Rba. sphaeroides in place of the native acsF in Rvi. gelatinosus (Upper), and confirmation by colony PCR (Lower). (B) HPLC analysis of pigments extracted from Rvi. gelatinosus strains, extracted from the same number of cells of each strain except for the $\Delta b c h E$ strain, which had a much greater BChl a content compared with the other strains. (Inset) Retention times and Soret/ Q_{y} maxima of peaks were used to identify BChl a.klj.

Fig. S5. Current status of known components of the oxygen-dependent cyclase. AcsF ${ }^{\alpha}$, AcsF ${ }^{\text {Anox }}$, and AcsF ${ }^{0 x}$ represent AcsF proteins from Alphaproteobacteria, anoxygenic phototrophs other than the Alphaproteobacteria, and oxygenic phototrophs, respectively. e^{-}denotes the electron donor to the diiron center of AcsF.

Table S2. Strains and plasmids described in this study

Strain/plasmid	Genotype/characteristics	Source
E. coli		
JM109	Cloning strain for plasmid constructs	Promega
S17-1	Conjugation strain for pK18mobsacB constructs	(48)
Rvi. gelatinosus		
WT	IL144	S. Nagashima*
$\Delta b c h E$	Unmarked deletion mutant of bchE in WT	This study
$\Delta b c h E \Delta a c s F$	Unmarked deletion mutant of acsF in $\triangle b c h E$	This study
$\Delta b c h E \Delta a c s F:: a c s F^{\text {Rs }}$	acsf ${ }^{R s}$ replacement of acsF in \triangle bchE	This study
$\Delta b c h E \Delta a c s F:: b c i E-a c s F^{\text {RS }}$	acsF replaced with rsp_6110-acs ${ }^{R s}$ in Δ bchE	This study
$\Delta b c h E \Delta a c s F:: c y c l$	cycl replacement of acsF in $\triangle b c h E$	This study
$\Delta b c h E \Delta a c s F:: c y c l-y c f 54$	cycl-ycf54 replacement of acsF in $\Delta b c h E$	This study
Synechocystis		
WT	sp. PCC6803	R. Sobotka ${ }^{+}$
acsf ${ }^{\text {Rg+ }}$	acs ${ }^{R g}$ and $K m^{R}$ replacement of psbAll in WT	This study
acsF ${ }^{\text {Rg+ }}$ - Δ cycl	Cm^{R} replacement of cycl in acsf ${ }^{\mathrm{Rg}+}$	This study
acsf ${ }^{\text {Rg+ }}$ - $\mathrm{cyc} 1 \Delta y c f 54$	Zeo ${ }^{R}$ replacement of central portion of ycf54 in acsf ${ }^{R g+} \Delta c y c l$	This study
$\Delta y c f 54$	Zeo ${ }^{R}$ replacement of central portion of ycf54 in WT	(22)
Rba. sphaeroides		
WT	2.4.1	S. Kaplan ${ }^{\ddagger}$
$\Delta b c h E \Delta c c o P$	Unmarked deletion mutant of bchE and ccoP in WT	(15)
$\Delta b c h E \Delta c c o P \Delta a c s F$	Unmarked deletion mutant of acsF in $\triangle b c h E \Delta c c o P$	(15)
$\Delta b c h E \Delta c c o P \Delta 6110$	Unmarked deletion mutant of rsp_6110 in Δ bchEstccoP	This study
Plasmids		
pK18mobsacB	Allelic exchange vector, $K m^{R}$	J. Armitage ${ }^{\text {§ }}$
pK18 ${ }^{\text {b }}$ chE $E^{\text {Rg }}$	Upstream-Ndel-downstream of bchE ${ }^{\text {Rg }}$ cloned into BamHI/Hindlll sites of pK18mobsacB	This study
pK184acsf ${ }^{\text {Rg }}$	Upstream-Ndel-downstream of acsf ${ }^{R g}$ cloned into BamHI/Hindill sites of pK18mobsacB	This study
pK1846110	Upstream-downstream of rsp_6110 cloned into Xbal/Hindlll sites of pK18mobsacB	This study
pK18[acsf $\left.{ }^{\text {Rs }}\right]$	acsf ${ }^{R s}$ cloned into the Ndel site of pK184acsF ${ }^{R g}$	This study
pK18[6110-acsf ${ }^{\text {Rs }}$]	rsp_6110-acsf ${ }^{R s}$ cloned into the Ndel site of pK184acsf ${ }^{R g}$	This study
pK18[cycl]	cycl cloned into the Ndel site of pK184acsi ${ }^{\text {Rg }}$	This study
pK18[cycl-ycf54]	cycl-ycf54 cloned into the Ndel site of pK18土acsf ${ }^{\text {Rg }}$	This study
pPD-FLAG	Cloning site, $K m^{R}$, flanked by psbAll upstream and downstream regions, Amp ${ }^{R}$	(21)
pPD[acsf ${ }^{R g}$]	acsf ${ }^{R g}$ cloned into Ndel/Bg/l/ sites of pPD-FLAG	This study
pBBRBB-Ppuf ${ }_{843-1200}$	Expression vector carrying the 843-1,200 region of puf promoter of Rba. sphaeroides, $\mathrm{Km}^{\text {R }}$	(27)
pBB[6110]	rsp_6110 cloned into the BgIII/Notl/ sites of pBBRBB-Ppuf ${ }_{843-1200}$	This study

*Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Yokohama, Japan.
${ }^{\dagger}$ Institute of Microbiology, Department of Phototrophic Microorganisms, Třeboň, Czech Republic.
${ }^{\ddagger}$ Department of Microbiology and Molecular Genetics, University of Texas Medical School, Austin, TX.
${ }^{\S}$ Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

Table S3. Primers used in this study
Primer
Sequence (5'-3')

6110UpF	GCTCTAGAGGAGCTGATCCCGCCCTTCC
6110UpR	GGAGAGCCCTCCGGCCGGCGCGTTCATGGGGGTTCCCTTCTCTTGG
6110DownF	CCAAGAGAAGGGAACCCCCATGAACGCGCCGGCCGGAGGGCTCTCC
6110DownR	GCAAGCTTCCCAGGTTCACCGCCACGCC
6110CheckF	GCCCCGGAGCGACAAGGAC
6110CheckR	GTATTTCTTGGCCTTGGTCAGG
6110F_Ndel	GGCAGATCTATGGGTCTGTTCACGAAACAAGCGGAA
6110F_BglII	TCTGCGGCCGCTCACAGCGTCACCTGCTCGGAGAA
6110R_Notl	CCAGTACATATGTGAACGCGCCGGCCGGAGG
0294F_Ndel	CTAGTACATATGTCAATAGCTCGGCTCCAGTCGG
0294R_Ndel	CTAGGTCAAGTACATATGGGAAACGGCTCCTCGCGATTC
45840UpF	CTAGGTCAAGTACATATGCGACGGCTGGGTCACGATGC
45840UpR	CTAGGTCAAGTAAAGCTTTGCCGGTGTAGAAGTCGCACGC
45840DownF	GAGCCGCCGACCATGCCGA
45840DownR	GAGTGCACCAGCACCGTGA
45840CheckF	GAGTCTCATATGGAGGGTCTCCGTGGTGTGTCA
45840CheckR	GAGTCTCATATGAAGCGAGGACAGGATGCTGAGC
33550UpF	GAGTCTAAGCTTGGAACTCCTCGCTCAGGTTGCG
33550UpR	GAACGTTTGCCGGACACGGT
33550DownF	ACGAGGTACTTCAGGTGCTCC
33550DownR	GAGTCTCATATGCTCGCGACCCCGACGATCG
33550CheckF	GAGTCTGGATCCTCACCATGCCGGGGCCATG
33550CheckR	GCCGATCCGGTTAACCTAGGCA
33550F_Ndel	GTAGTCTCATATGCTAATCCAGGGATGCAAGGGG
33550R_BamHI	GTATCCAGTGATTTTTTTCTCCATAGAGTTGTTTAAAATAGTTTCC
1214UpF	GGAAACTATTTTAAACAACTCTATGGAGAAAAAAATCACTGGATAT
1214UpR	GGTGATCCAGCGGAAGACAACCTTACGCCCCGCCCTGC
1214UpCmF	GCAGGGCGGGGCGTAAGGTTGTCTTCCGCTGGATCACC
1214DownCmR	GGGAGTTGTTGGGAGAGTTCGGTC
1214DownF	GTTGATTCCATATGGTTAATACCCTCGAAAAGCCCG
1214DownR	

