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The yeast Saccharomyces cerevisiae is widely used as a cell factory and as an
important eukaryal model organism for studying cellular physiology related to
human health and disease. Yeast was also the first eukaryal organism for
which a genome-scale metabolic model (GEM) was developed. In recent years
there has been interest in expanding the modeling framework for yeast by incor-
porating enzymatic parameters and other heterogeneous cellular networks to
obtain a more comprehensive description of cellular physiology. We review the
latest developments in multiscale models of yeast, and illustrate how a new
generation of multiscale models could significantly enhance the predictive
performance and expand the applications of classical GEMs in cell factory
design and basic studies of yeast physiology.
Emergence of multiscale models for yeast
Being widely used as a microbial cell factory (see Glossary), metabolism in the yeast
Saccharomyces cerevisiae has been extensively studied and engineered with the purpose
of improving its properties. To this end, various types of computational models have
been leveraged to quantitatively characterize yeast physiology and to guide metabolic
engineering. Among these, genome-scale metabolic models (GEMs) have been
most widely used (Box 1). A benefit of this constraint-based modeling concept is that it
readily allows continuous model expansion when new experimental evidence becomes
available, and consequently GEMs for S. cerevisiae have been frequently updated with
more than 14 published versions between 2003 and 2019 [1,2], thereby typically yielding
improved model performance.

Even thoughGEMs are instrumental to investigate what the yeast metabolic network can achieve,
a drawback of such classical GEMs is that they only consider the stoichiometry of the metabolic
network. In reality, the fluxes through ametabolic network are constrained bymanymore aspects
that are by design neglected in classical GEMs, such as metabolic regulation caused by gene
expression and post-translational modifications, as well as information about enzymatic
properties defined, among others, by the protein 3D structures. Incorporating information
about these cellular processes and protein structures would allow integrative analysis of
multilayer omics data, thereby enabling the models to provide mechanical insight into the
basic principles of the regulation and evolution of complex cellular metabolism. This has been
recognized, and has resulted in the gradual development of multiscale models [3] through
the addition of enzyme kinetics, 3D structures, and heterogeneous networks into classical
GEMs, thereby laying the groundwork for holistic and accurate simulations of whole-cell behaviors.
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Glossary
Cofactor: a non-protein compound that
is necessary to allow or improve the
catalytic efficiency of an enzyme in
specific biochemical reactions.
Constraints: in vivometabolic fluxes
cannot take on any value but are
constrained to minimum and maximum
values. For example, an irreversible
reaction cannot have a negative flux
value, while a cell is not able to take up
nutrients at an infinitely high rate. The
constraints for each reaction are
dictated by genetics, environment,
network topology, and physicochemical
laws, which can be regarded as different
types of constraints. If substrate-uptake
rates are experimentally measured, they
can be used to set the lower and upper
bounds of the corresponding transport
reactions in a metabolic model.
Genome-scale metabolic models
(GEMs): when a whole-genome
annotation is available, all metabolic
enzymes present in a specific organism
can be identified and combined to
reconstruct a GEM that encompasses
the metabolic network and all gene–
protein–reaction associations. The GEM
is an organism-specific knowledgebase,
but can also be used to predict cellular
phenotypes under various constraints,
for example, exchange reaction rates
measured from fermentation
experiments.
Heterogeneous networks: in addition
to the cellular metabolic networks that
can be described in genome-scale
metabolic models, various other
molecular networks are present in the
cell, including transcriptional regulatory
networks and signal transduction
networks. Although these networks
affect cellular metabolism in distinct
ways, they furthermore interact with
each other to determine the final
phenotypic output.
Metabolic engineering: a strategy
where multiple rounds of gene
manipulation are employed guided by
omic analysis, flux simulation, and/or in
silico strain design, with the objective of
optimizing a microbial cell factory to
overcome bottlenecks in the production
of a desired product.
Metabolism and expression (ME)-
models: in contrast to GEMs, ME-
models combine a genome-scale
description of metabolism with
stoichiometric representations of gene
transcription and protein translation. In
comparison to GEMs, ME-models are
[7], and metabolic engineering [10]. They also represent significant breakthroughs in exploring the
complex relations between cellular genotype and phenotype. Similar to bacterial multiscale
models, an ME-model [11] and a whole-cell model [12] have recently been constructed and
evaluated for S. cerevisiae. Although these models are significant advances that place eukaryal
multiscale models on a par with their bacterial equivalents, the models still lack integration of regu-
latory information from heterogeneous networks, not only for yeast but also for various other model
organisms. In addition, significant challenges remain for reconstructing comprehensive multiscale
models for non-model species owing to the lack of data.

We review here progress in yeast multiscale metabolic modeling and show how multiscale
models are constructed by gradually encompassing additional constraints. We demonstrate
how this approach greatly enhances model predictions, thereby accelerating model-based
biological discoveries and pioneering work in systematic metabolic engineering. Because
these bases are founded on classical GEMs, we first briefly outline the latest developments
in GEMs and heterogeneous network reconstructions for yeast. In particular, strategies
to expand yeast GEMs with enzyme parameters and heterogeneous networks to yield
multiscale models are evaluated and discussed. Next, applications of GEMs and multiscale
models for yeast in multi-omics integrative analysis and in silico cell factory design are
highlighted. Finally, strategies and directions to develop future generations of multiscale
models are set forth.

Continuous growth of GEMs for model and non-model yeast species
When the whole-genome sequence of S. cerevisiae became available in 1996 [13] it was possible
to reconstruct the first GEM for yeast, published in 2003 as iFF708 [14]. Since then a series of up-
dated S. cerevisiae GEMs have been released [1,2], where each new version has represented a
gradual improvement of previous models. Among these models, the consensus yeast GEMs
(Yeast1 to Yeast8 [15–20]) are a series of community-curated models, and progressmade before
Yeast7.6 has been intensively reviewed previously [2,21]. In this section we therefore only evalu-
ate recent developments in S. cerevisiae consensus GEMs since Yeast7.6, which was published
in 2013 [18]. Beyond Yeast7.6, the coverage and quality in description of lipid, flavor, cofactor,
and substrate metabolism has been improved in recent years. The large number of unique me-
tabolite species in lipid metabolism make this part of the metabolic network not straightforward
to represent, in particular in a format that is readily constrained by measured lipidomics data.
Based on detailed curation of lipid metabolism [22], novel approaches have been developed
for modeling lipid metabolism in yeast, for example, the SLIMEr [23] formulation of lipid reactions
and an alternative object-oriented stochastic strategy [24]. The pathways relevant for flavor
formation were recently curated and extended in S. cerevisiae GEM iWS902, which provided
mechanical insights underlying aroma formation during industrial applications [25]. To cover
cofactor metabolism, a network covering yeast iron metabolism was recently integrated into
Yeast7.6 [26]. In Yeast8, the reported cofactor concentrations were further used to update
biomass composition, and consequently related sub-pathways that did not carry metabolic
fluxes [19] in previous GEMs were now activated. Yeast8 was further expanded to simulate a
wider range of substrate utilization based on in vivo substrate usage data from Biolog experiments.
Furthermore, 13 additional aroma compounds and their associated reactions were added to
extend the application of Yeast8 to industrial wine production [27]. Notably, the development
of the consensus yeast GEM has been reproducibly tracked since Yeast8 through Git- and
GitHub-hosted versioning systems, enabling community-driven model improvements and
accessibility to the wide research community (https://github.com/SysBioChalmers/yeast-GEM).
So far this has resulted in engagement of 11 researchers and the release of 23 updated versions
of the model, including the current version 8.4.2.
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Although the GEM of S. cerevisiae as a model yeast has been most extensively curated,
GEMs have also been constructed and applied for many other yeast species, including but not
limited to Lachancea kluyveri [28], Exophiala dermatitidis [29], Issatchenkia orientalis [30], and
Cutaneotrichosporon oleaginosus [31]. Progress in reconstructing classical GEMs for these
non-model yeast species is thoroughly reviewed elsewhere [1,2,32]. Although the remainder of
this review will mostly focus on S. cerevisiae, the methods and approaches discussed can also
be applied to GEMs of non-model yeasts, thereby providing a solid basis for the development
of the next generation of multiscale models.

Enhanced yeast GEMs with constraints from kinetics and proteome
Classical GEMs mainly rely on flux balance constraints, but the distribution of metabolic flux
through different branches of the metabolic network is additionally determined by enzyme kinet-
ics and enzyme abundances. Furthermore, enzyme activities are dictated by their 3D protein
structures which by themselves are linked to their primary structure (i.e., protein sequence). As
distinct phenotypes can be governed by variations in enzyme activities, the mapping of protein
sequence variations to altered fluxes can provide new insight into these connections. The integra-
tion of reaction kinetics, protein abundances, and 3D protein structures with GEMs will therefore
enhance its prediction capabilities (Figure 1).

Adding reaction kinetics
Kinetic models have long been developed to describe yeast metabolism. In their early stages such
models primarily encompassed specific sub-pathways, for example, trehalose metabolism [33],
glycolysis [34], and sphingolipid biosynthesis [35]. Although these models can predict cellular dy-
namics under environmental or genetic perturbations, efforts have been made to expand their
limited scope towards describing larger metabolic networks. As part of this, a kinetic model was
established that considered the core metabolic pathways including the glycolysis pathway, the
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Box 2. Enzyme-constrained GEMs (ecGEMs)

What separates classical GEMs (Box 1) from ecGEMs is that both enzyme kinetics and abundances are considered in the
latter. Because no nonlinear relationships are introduced when adding enzyme constraints, these ecGEMs can be
simulated and analyzed by using the same constraint-based algorithms that are applied to GEMs (Box 1). In contrast to
classical GEMs, in ecGEMs fluxes through each enzyme-catalyzed reaction are constrained by their turnover numbers,
namely enzyme-specific kcat values multiplied by the enzyme abundances (Figure I). Meanwhile, the total quantity of
enzymes that can catalyze all metabolic reactions is constrained by a protein-pool pseudo-metabolite, whose usage is
restricted by an upper bound that is in accordance with experimental total protein measurements. When no quantitative
proteomics data are available, only the total protein-pool usage is constrained, while in the model the amount of protein
can be freely distributed across all enzymes (Figure I). If quantitative proteomics data are available for a condition of interest,
then individual enzyme usages can be constrained to their corresponding measured abundances. GECKO, a MATLAB
and Python toolbox, has been developed to construct and simulate such ecGEMs [45]. The latest iteration of this toolbox,
version 2 [117], has placed particular focus on the reconstruction of ecGEMs for non-model organisms.
protein 3D structures are more conserved than amino acid sequences, this showed that protein
function prediction can be aided by clues from the folds, active sites, and binding sites extracted
from the protein 3D structures. More recently, the Rosetta de novo structure-prediction method
was used to predict the structure of 3338 protein domains that were parsed from the whole yeast
proteome, among which 581 domains could be assigned to novel Structural Classification of
Proteins (SCOP) superfamilies [51].

Experimentally determined yeast protein structures are readily available from the Protein Data
Bank (PDB) database [52], while homology-derived protein structures can be queried from
various sources including SWISS-MODEL [53] and Modbase [54]. As a typical example, a total
of 3846 experimentally determined protein structures are available from the PDB database for
1543 S. cerevisiae S288c proteins. Some of these structures are at low resolution or include
mutations compared to the reference sequence, such that quality analysis and homology
modeling are necessary to ensure that advanced models are based on high-quality structures
[55]. Meanwhile, high-quality experimentally determined yeast protein structures continue to
accumulate, and homology modeling approaches have significantly advanced. It has now

Image of Figure I


Trends in Biotechnology
become feasible to collect protein 3D structures at the proteome scale for S. cerevisiae, and this
forms the basis for building GEMs constrained (or accompanied) by additional parameters from
protein 3D structures in the near future.

Connecting yeast GEMs with heterogeneous cellular networks
Cellular metabolic activities are tightly regulated at multiple levels through the interaction of various
heterogeneous molecular networks, and even ecGEMs alone are not able to simulate the effects
of complex regulation. Thus, the multiscale models are essential to capture the intricate metabo-
lism by integrating heterogeneous cellular networks including signal transduction networks,
transcriptional regulatory networks (TRNs), and protein secretion pathways with GEMs (Figure 2).

Stress- and nutrition-related signal transduction networks
The inclusion of signal transduction networks in a multiscale model would allow it to predict
cellular responses to external stimuli or stress. As one of the earliest examples, a model of osmoreg-
ulation was integrated with a metabolic model to describe the cellular response to hyperosmotic
shock [56]. Since then, computational models for many more signal transduction networks have
been constructed, including the signaling networks for MAPK [57], Snf1 [58], and ion regulation
[59]. Moreover, the complexity of signaling network models has increased by considering multiple
stress and nutrition stimuli simultaneously. As one attempt, all six major stress-response pathways
related to ion homeostasis, nutrient adaptation, osmotic stress, oxidative, heat shock, and phero-
mone stress response were merged into a holistic molecular interaction map [60]. Interestingly, this
comprehensive map showed that yeast stress-response pathways are organized into bow-tie struc-
tures, and complex-mediated reversible reactions obtained through network motif analysis play a
unique role in the regulation of stress responses. An integrated nutrient signaling networkwas recently
built for yeast, and this could be used to predict nutrient-responsive transcription factor (TF) activities
in mutant strains under nutrient shifts [61]. However, all these newly developed stress-related signal
transduction network models were not coupled with yeast GEMs, and they were therefore not able
to explore how cellular metabolism was quantitatively regulated in response to these external
stresses. By contrast, Boolean modeling of a glucose-sensing regulatory pathway has recently
been successfully integrated with a small enzyme-constrained metabolic model for yeast, and this
could elucidate how dynamic regulation through a signaling pathway affects cellular metabolism
and results in improved enzyme utilization predictions for both respiratory andmixedmetabolism [62].

Transcriptional regulatory networks
Regulation of gene transcription influences metabolism on a global scale [63], rendering it impor-
tant to develop TRNs that accompany yeast GEMs to allow comprehensive simulations of meta-
bolic network regulation. The functional annotation of S. cerevisiae TFs is ever increasing and is
catalogued in several public databases, such as the Saccharomyces Genome Database (SGD)
[64] and YEASTRACT [65], which are instrumental for building high-quality TRN models. As an
example, a comprehensive TRN model was built for S. cerevisiae based on the SGD database
[64], consisting of 186 TFs and 5727 target genes, involving 28 260 regulatory interactions
[66]. Large-scale RNA-seq data from divergent conditions is another important source to infer
TRNs for S. cerevisiae. With the aid of machine learning, a global TRN comprising 12 228 inter-
actions was built based on single-cell RNA-seq measurements on 38 285 individual cells under
11 different environmental conditions [67]. Timecourse gene expression data has also been
used to develop a whole-cell transcriptional model which could predict and validate new tran-
scriptional interactions [68]. The high-confidence TRN map of yeast could be expanded based
on multiple datasets by using dual threshold optimization and network inference algorithms,
resulting with a high-confidence yeast TRN made up of 96 TFs, 1686 target genes, and 3268
regulatory interactions [69].
Trends in Biotechnology, March 2022, Vol. 40, No. 3 297



High-quality yeast TRNs set a solid base to formulize integrated models, even though combining
TRNs with GEMs remains challenging. Multiple novel methods that couple TRNswith GEMs have
recently been reviewed [70]. Several of these novel algorithms have been used for yeast, and they
can roughly be divided into two main approaches. (i) Based on experimental data, Boolean rules
reflect the interactions between TFs and their target genes, and thereby the reactions in the GEM
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can be switched on or off based either on the TRN or on gene expression data [71]. (ii) Using the
probabilistic regulation of metabolism (PROM) [72] approach, the probabilities to characterize
gene states and gene–TF interactions are introduced. According to these probabilities, the
maximum fluxes through specific reactions are tuned to represent the effects of TF regulation.
This probabilistic framework successfully combined TRNs with GEMs, leading to more accurate
growth prediction for S. cerevisiae [73].

Protein secretion pathway
In yeast, the protein secretion pathway encompasses numerous distinct steps that are catalyzed by
>100 cellular proteins [74], which together can determine not only cellular phenotypes but also the
production yields of heterologous proteins [75]. By describing 16 subsystems that cover all the
secretory machinery processes from translocation to sorting, a stoichiometric model of the
S. cerevisiae protein secretion pathway was reconstructed [76
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Outstanding questions
How can we efficiently develop a new
generation of multiscale models for
non-model yeasts?

How can we further develop more
advanced yeast whole-cell models by
integrating more heterogeneous cellular
networks?

How can we develop genome-scale
kinetic models for yeasts?

How can we use the various omics
data to tune model parameters for
better prediction?

How can we exploit complex models
to carry out intelligent cell factory
design?

How can we integrate different types of
regulatory networks with GEMs during
model simulations?

How can we predict the activity of
enzymes with specific mutations and
use these data as input for the model
simulation?
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temperature-constrained GEM etcYeast7.6 has identified key enzymes associated with heat-
tolerance, and one of the candidates, ERG1, was experimentally verified to affect heat-tolerance
[47]. In addition, by using a kinetic model of yeast, the potential enzyme targets for improving the
flux of desired products can be prioritized via flux control coefficient analysis or correlation analysis
between the predicted enzyme usages and the relevant product formation rates [40].

Concluding remarks and future perspectives
Multiscale models enable interrogation of biological complexity at multidimensional levels instead
of limiting them to only one level in the central dogma of biology. Despite significant advances in
yeast multiscale models, there are still several challenges that could hinder progress in the near
future, in particular when expanding multiscale model reconstruction to non-model yeast species
(see Outstanding questions). First, the number of enzymes for which high-quality experimentally
determined kinetic parameters are available is still limited [108], particularly for non-model yeast
species. However, developments in machine learning and novel parameter inference procedures
may pave the way for the prediction of unknown parameters of enzyme/protein for less well studied
yeast species [109]. Second,model reconstruction needs large numbers of standardized datasets,
such as growth data obtained from continuous cultivation and absolute quantitative protein abun-
dance data from mass spectrometry measurements. However, the availability of such datasets
is limited for most yeast species beyond S. cerevisiae. The collection of high-quality growth
and omics datasets for non-model yeast species under standard conditions would therefore
be very valuable and alleviate the shortage of essential data. Lastly, the metabolic models of
S. cerevisiae and other yeast strains still require additional curation to yield a more complete
coverage of metabolic sub-pathways, and the resulting high-quality models will act as new corner-
stones to build comprehensive multiscale models for yeast. To solve the issue, automatic protein
function prediction [110] together with evidence from omics measurements and molecular
experiments could help to increase the metabolic coverage. In addition, inconsistencies between
model predictions and in vitro experimental results will provide clues for further iterative improve-
ment of model quality.

Even though a whole-cell model WM_S288C has been developed based on S. cerevisiae GEM
iTO977 [12], challenges remain in developing a fully functional whole-cell model for yeast from the
aforementioned multiscale models. Combining high-quality TRNs with metabolic models will
certainly help to illustrate how transcriptional regulation affects cellular metabolism through
resource allocation under various genetic or environmental perturbations. However, TRNs and
stress-response networks have not yet been integrated with yeast ME- or whole-cell models be-
cause computational toolboxes to couplemultiple types of heterogeneous networks are still lacking.
Some novel coupling algorithms and simulation strategies, such as Bayesian metamodeling [111]
and multi-algorithmic simulators [112], have recently been updated and evaluated, and these ap-
proaches could be used to integrate more interconnected cellular processes with yeast whole-
cell models. Overall, we anticipate that progress in measurements and algorithms will promote
yeast ME-modeling and whole-cell models to provide a more powerful computation platform that
will play a prominent role both in fundamental studies of yeast and in cell factory design.
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