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The flow of viscoelastic fluids in channels and pipes remains poorly understood, particularly at low
Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure
measurements and particle tracking. The flow friction factor fη versus flow rate exhibits two regimes: a
transitional regime marked by rapid increase in drag, and a turbulentlike regime characterized by a sudden
decrease in drag and a weak dependence on flow rate. Lagrangian trajectories show finite transverse
modulations not seen in Newtonian fluids. These curvature perturbations far downstream can generate
sufficient hoop stresses to sustain the flow instabilities in the parallel shear flow.
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Fluids containing polymers are found in everyday life
(e.g., foods and cosmetics) and in technology spanning the
oil, pharmaceutical, and chemical industries. A marked
characteristic of polymeric fluids is that they often exhibit
non-Newtonian flow behavior such as viscoelasticity [1,2].
Mechanical (elastic) stresses in such fluids are history
dependent and develop with timescale λ, which is propor-
tional to the time needed for a single polymer molecule to
relax to its equilibrium state in dilute solutions. These
stresses grow nonlinearly with shear rate and can dramati-
cally change the flow behavior [1,2]. For example, the
presence of the polymer in turbulent pipe flows can suppress
eddies and leads to large reduction in flow friction [3,4]. At
low Reynolds numbers (Re), where inertia is negligible,
elastic stresses can lead to flow instabilities not found in
ordinary fluids like water [5–12]. They can also exhibit a
new type of disordered flow—elastic turbulence—a turbu-
lentlike regime existing far below the dissipation scale
[13–16].
Recently, there has been mounting evidence that the flow

of viscoelastic polymeric solutions in pipe and channel
flows is nonlinearly unstable and undergoes a subcritical
instability at sufficiently high flow rates even at low Re
[12,17–22]. We note that this nonlinear elastic instability is
different from the linear instability found in highly shear-
thinning fluids [23–26]; the base flow of the former is stable
while the latter is unstable. Each is important in its own right.
Theoretical investigations using Oldroyd-B-type model and
nonlinear perturbation analysis show that a subcritical
bifurcation can arise from linearly stable base states
[17,19,20,27], while nonmodal stability analysis predicts
transient growth of perturbation [28–30]. Subsequent
experiments in small pipes found unusually large velocity
fluctuations that are activated at many timescales [21], as

well as hysteretic behavior [18]. More recently, experiments
in a long microchannel using a linear array of cylinders as a
way to perturb the (viscoelastic) flow showed an abrupt
transition to irregular flow and that the velocity fluctuations
are long lived [12,22]. The unstable flow exhibits features of
Newtonian turbulence such as power-law behavior in
velocity spectra, intermittency flow statistics, and irregular
structures in the streamwise velocity fluctuation [22]. Taken
together, these results show that polymeric solutions flowing
in straight channels can undergo a subcritical transition—a
sudden onset of sustained velocity fluctuations above a
perturbation threshold and a critical flow rate. This scenario
is akin to the transition from laminar to turbulent flow of
Newtonian fluids in pipe flows [31,32]. Themain distinction
is that the instability is caused by the nonlinear elastic
stresses and not inertia. Unlike the Newtonian pipe turbu-
lence, however, little is known about the basic structures
organizing the instability and the law of resistance (i.e.,
pressure loss due to friction) as the flow transitions from a
stable to an unstable state.
In this Letter, we investigate the flow of polymeric

solutions in a straightmicrochannel at lowRe using pressure
measurements and particle tracking methods. Pressure
measurements show that the flow resistance increases
relative to the stable viscoelastic base flow, following
the transition from a laminar to “turbulentlike” state,
cf. Fig. 1(c). This behavior is analogous to Newtonian
turbulence where the friction factor increases as the flow
transitions from laminar to turbulent except that here the
governing parameter is the Weissenberg number (Wi),
defined as the product of the fluid relaxation time λ and
the flow shear rate _γ. The rise in flow resistance is related to
enhanced elastic stresses and suggests flow patterns not seen
in the (viscoelastic) laminar regime. We find that, far
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downstream from the initial perturbation, tracer particles
follow wavy trajectories with spanwise modulation not
found in the stable unperturbed flow (cf. Fig. 5). We believe
that the increase in flow resistance is connected to the
appearances of thesewavy particlemotions.A friction factor
scaling (i.e., flow resistance vs pressure drop) for visco-
elastic channel flows is proposed to capture this increase
in drag.
Experiments are conducted using a straight microchan-

nel with equal width and depth (W ¼ D ¼ 100 μm),
fabricated using standard soft-lithography methods. The
device schematic is shown in Fig. 1(a). The channel length
is much larger than its width L=W ¼ 330 and is divided
into two regions. The first region consists of a linear array
of fifteen cylinders (n ¼ 15) that extends for 30 W, with the
last cylinder located at x ¼ 0. The diameter of the cylinder
is d ¼ 0.5 W and the center to center separation is
l ¼ 2 W. An unperturbed control case with no cylinders
(n ¼ 0) is used as the linearly stable viscoelastic case. The
second region follows the array of cylinders and consists of
a long parallel shear flow 300 W in length. To measure
pressure signals, sensors are placed at three locations in
the parallel shear region, x1 ¼ 1 W, x2 ¼ 50 W, x3 ¼
290 W [see Fig. 1(a)]. The pressure drop per length p1ðtÞ¼
ðP1−P2Þ=ðx2−x1Þ and p2ðtÞ ¼ ðP2 − P3Þ=ðx3 − x2Þ is
recorded at 5 ms resolution for over 2 hours.
The main polymeric solution is prepared by adding

300 ppm of polyacrylamide (PAA, 18 × 106 MW) to a
viscous Newtonian solvent (90% by mass glycerol aqueous
solution); the PAA polymer overlap concentration c�
is 350 ppm [33] and c=c� ¼ 0.86. This weakly shear-
thinning polymeric solution has a nearly constant viscosity
of around η ¼ 300 mPa s. The Newtonian solvent has

constant viscosity of 220 mPa s and is also used for
comparison. Throughout our experiment, the Reynolds
number is kept below 0.01, where Re ¼ ρUH=η, U is the
mean centerline velocity,H is the channel half-width, and ρ
is the fluid density.We characterize the strength of the elastic
stresses compared to viscous stresses by the Weissenberg
number [7], defined here as Wið_γÞ ¼ N1ð_γÞ=2_γηð_γÞ, where
_γ ¼ U=H is the shear rate and N1 is the first normal stress
difference (see Supplemental Material [34] for fluid rheo-
logy and residence time).
We begin by investigating the flow patterns formed when

a stream of experimental fluid with added fluorescent dye is
injected at x ¼ 1 W after the last post. The dye spreading
and patterns are then visualized far downstream in the
parallel shear region, 200W downstream from the last post.
Figure 1 shows the spatiotemporal profile of the dye
intensity along the device’s cross section (y) for a channel
containing 15 posts (n ¼ 15) for Newtonian [Fig. 1(b)] and
viscoelastic [Fig. 1(c)] fluids. For the Newtonian case, the
profile shows typical laminar dye layer with minimal dye
penetration into the undyed stream, except for diffusion.
(Similar behavior is observed with viscoelastic fluids for the
n ¼ 0 case.) A different dye pattern is observed when the
Newtonian fluid is replaced by the polymeric solution under
the same conditions. The viscoelastic case, shown in
Fig. 1(c) at Wi ≈ 20, shows irregular flow patterns with
spikes of dye penetration into the undyed fluid stream. The
flow structure of streamwise velocity showed similar devel-
opment downstream (Supplemental Material [34]). These
fluctuations in time suggest flow modulations normal to the
mean flow. In fact, we show later that particle trajectories
exhibit wavy coherent motions in the parallel shear region.
As mentioned before, little is known about elastic

turbulence in channel flows. Importantly, there is no known
law of resistance for such flows. Here, we observe a new
friction factor scaling for long chain polymeric solutions
with weak shear thinning in straight channel flows. Figure 2
shows the mean pressure drop per length signals p1, p2 for
viscoelastic fluids for n ¼ 0 and 15 cases as a function of
flow rate Q and Wi. We note that the statistical mean of the
reported signals measures the aggregate flow resistance
encountered to sustain a constant mass flow rate. As
expected, the pressure drop or flow resistance increases
with flow rate and Wi. The pressure drop for the n ¼ 0 case
slightly deviates from the Newtonian case (i.e., △P ∼Q)
due to mild shear thinning in fluid viscosity. These effects
can be accounted for by estimating the pressure drop using
wall shear rate and corresponding viscosity ηð_γÞ measured
using a cone-and-plate rheometer, as shown by the solid
line in Fig. 2. No significant difference is found between p1

and p2 for the n ¼ 0 case as expected, since entrance
effects are minimized by using a tapered inlet that generates
minor disturbance relative to that of the cylinder array. For
n ¼ 15, we find a clear increase in pressure drop relative to
the n ¼ 0 case; the two pressure segments p1 and p2 show

(a)

(b)

(c)

FIG. 1. (a) Schematic of the microchannel, showing location of
pressure sensors and the dye injection scheme. [(b) and (c)]
Spacetime dye patterns for n ¼ 15 and x ¼ 200 W in the parallel
shear region, (c) viscoelastic fluid at Wi ¼ 20, and (b) the
Newtonian case at identical flow rate.
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sharp increase in drag occurs during the transition regime
before the flow becomes fully turbulent. We note the Wi1=3

scaling observed here is lower than the Wi1=2 scaling of
injected power in the elastic turbulence of a swirling
parallel plate system where the base flow is curved and
linearly unstable [38].
Next, we investigate the structure of the viscoelastic flow

for n ¼ 15 and Wi ¼ 18; this is the regime in which we
expect highly irregular flow but quantifying the presence of
flow structures has been difficult due to the weak spanwise
velocity component relative to the mean shear [22]. To
interrogate the flow with enough spatial and temporal
resolution, we use a novel three-dimensional holographic
particle tracking method [39,40]. The flow is seeded with
tracers (1 μm diam at 0.001%) imaged under microscope
and high speed camera (5000 fps). Using a coherent light
source, particle positions are reconstructed from the light
scattering field on the imaging plane (see [34]). The
uncertainty in particle centroid is 30 nm for in-plane x,
y components. The measurement window is located at
x ¼ 200 W in the parallel shear region and extends for
2.5 W streamwise and 0.9 W spanwise.
Figure 5(a) shows sample particle trajectories for the

Newtonian (grey) and viscoelastic (blue) fluids for the n ¼
15 and Wi ¼ 18. While the particle trajectory in the
Newtonian case follows the mean flow with little lateral
motion, particle trajectories in the viscoelastic fluid case
display a relatively pronounced waviness and lateral move-
ment. This is not isolated to a few particles and Fig. 5(b)
shows the full extent of the spanwise spread for 2000
such Lagrangian trajectories sampled uniformly in the
channel. Such wavy structures underlie the irregular dye
transport patterns seen in Fig. 1(c). We quantify these
deviations from the base flow by calculating the normalized
distribution (pdf*) of the ratio between transverse to

streamwise cumulative displacements [Fig. 5(c)] defined
as δy=δx ¼ P jdyij=

P jdxij, where dyi and dxi are
particle displacements between frames. The Newtonian
data (black) show minimal transverse component and set
the measurement noise level. Particles in the viscoelastic
fluid, however, exhibit small but finite values of transverse
velocity and a broader distribution of individual particle
end-to-end displacement. These results indicate the pres-
ence of spanwise structures in viscoelastic fluids in parallel
shear flows. While these deviations from the base flow are
small in absolute terms (2% of the streamwise component),
even small deviations in the velocity fields in viscoelastic
fluids can represent significant increase in elastic stresses
due to the nonlinear relationship between stress and
velocity [41,42].
Can these curved particle trajectories drive or maintain

flow instabilities far downstream (200 W)? Figure 5(d)
shows the distribution of particle path line curvatures at
200 W for Wi ¼ 18, n ¼ 15. The trajectories have a mean
curvature of R−1 ≈ :023 μm−1, which is an order of
magnitude larger than the Newtonian counterpart. Using
N1 data (see [34]), we compute the Pakdel-McKinley
condition ½ðλU=RÞWi�1=2 [43]. We find a value of approx-
imately 7, which is sufficiently large to trigger flow
instabilities. Similarly, we find that hoop stresses N1=R ¼
8 Pa=μm are of the same order (or higher) than the viscous
drag ΔP=ΔLjn¼0 ¼ 2 Pa=μm. Hence additional pressure
head is lost to overcome elastic stresses induced by the
chaotic flow. These results suggest that weak but nontrivial
streamline curvatures generate sufficient elastic stress
fluctuations in the secondary flow direction to sustain flow
instabilities far downstream.
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In summary, we investigated the flow of viscoelastic
fluids in a long, straight microchannel at low Re. This flow
becomes unstable via a nonlinear subcritical instability at a
critical Wi for finite amplitude perturbations [12]. Pressure
measurements are used to establish the friction factor
scaling for this flow (Fig. 4). We find two regimes: (i) a
transitional regime 5≲Wi≲ 9 in which the (viscous)
friction factor fη ∼Wi1=3, and (ii) a turbulentlike regime
Wi≲ 9 in which a sudden reduction of fη is observed
followed by a weaker dependence on Wi. The increase in
drag (30%, cf. laminar flow) is accompanied by an increase
in pressure fluctuation and development of elastic hoop
stresses due to finite spanwise curvature perturbations,
which we quantify using high-resolution holographic
particle tracking. Unlike the Reynolds stress in classical
turbulence, the extra flow resistance here stems from elastic
hoop stresses induced by curvature perturbations.
Furthermore, the various levels of increased resistance
for different polymeric fluid may be controlled by the
distribution of such curvatures. At intermediate Re, recent
studies on elastoinertial turbulence (EIT) proposed a direct
path to the classic drag reduction asymptote, bypassing
Newtonian turbulence [44,45]. Whether a common insta-
bility underlies these two states, elastic turbulence and EIT,
remains an open question. Finally, our results provide
strong evidence for the “instability upon an instability”
mechanism proposed for the finite amplitude transition of
viscoelastic fluids in parallel flows [19] and develop new
insights into the flow of polymeric solutions in channels
and pipes. Even small perturbations in the velocity field can
lead to large changes in elastic stress and flow drag.
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