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Viscoelastic flow past a cylinder is a classic benchmark problem that is not completely
understood. Using novel three-dimensional (3D) holographic particle velocimetry, we
report three main discoveries of the elastic instability upstream of a single cylinder
in viscoelastic channel flow. First, we observe that upstream vortices initiate at
the corner between the cylinder and the wall, and grow with increasing flow rate.
Second, beyond a critical Weissenberg number, the flow upstream becomes unsteady
and switches between two bistable configurations, leading to symmetry breaking
in the cylinder axis direction that is highly 3D in nature. Lastly, we find that the
disturbance of the elastic instability propagates relatively far upstream via an elastic
wave, and is weakly correlated with that in the cylinder wake. The wave speed and
the extent of the instability increase with Weissenberg number, indicating an absolute
instability in viscoelastic fluids.

Key words: absolute/convective instability, polymers, viscoelasticity

1. Introduction

The flow of a viscoelastic fluid past a cylinder is a benchmark problem in
non-Newtonian fluid mechanics that is not completely understood (Ultman & Denn
1971; Dhahir & Walters 1989). Such flows are frequently encountered in technologies
including filtration processes, flow in soil, and oil extraction (Chhabra, Comiti &
Machač 2001) as well as porous biological systems, including blood flow pass
cardiovascular valves (Marsden 2014) and brain tissues (Iliff et al. 2012). In addition,
viscoelastic flow around cylinder arrays has been extensively used in the study of flow
in porous media (De et al. 2017; Kawale et al. 2017) and instabilities at low Reynolds
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number (Qin & Arratia 2017; Varshney & Steinberg 2017; Haward, Toda-Peters &
Shen 2018). Viscoelastic flow past a single cylinder in an unbounded domain has
been thoroughly investigated. In general, the curvature of the cylinder provides a
perturbation to the fluid streamlines that can initiate viscoelastic instabilities above
a critical condition (Pakdel & McKinley 1996). This behaviour can be captured
well by both linear instability analysis and numerical simulations (Ultman & Denn
1971; Mena & Caswell 1974; Chilcott & Rallison 1988), which show an increase in
elastic stresses in the cylinder wake that can lead to velocity fluctuations and chaotic
flow behaviour. While the development of three-dimensional (3D) flow structures
is an important stage in the onset of flow instabilities, particularly in wall-bounded
flows (McKinley, Armstrong & Brown 1993), such flow structures have yet to be
experimentally characterized in detail.

Experimental investigations for unbounded and unidirectionally bounded cylinders
have observed a wake instability downstream of the cylinder (McKinley et al. 1993)
beyond a critical Weissenberg number, Wi= λ̇ , where ̇ is the shear rate and λ is
the fluid relaxation time, as well as drag increase (James, Shiau & Aldridge 2016).
Numerical simulations at moderate Wi found stress concentration in the cylinder
wake (Alves, Pinho & Oliveira 2001) as well as transition to elastic turbulence
(Grilli, Vázquez-Quesada & Ellero 2013). Most of the existing literature on upstream
instabilities, however, focus on contraction type geometries. The vortex development
in axisymmetric or planar contractions has been investigated by many authors, where
the lip and corner vortices emerge, grow and become unsteady (Lubansky et al. 2007;
Rodd et al. 2007, 2010; Miller & Cooper-White 2009; Gulati et al. 2010; Hwang,
Mohammadigoushki & Muller 2017). The effects of contraction ratios are well studied
and an array of polymeric solutions have been used, including long chain polymers,
single DNA molecules, and surfactant systems. On the other hand, the development
and characteristics of elastic instabilities upstream of an obstacle such as a cylinder
have received far less attention. The cylinder differs from the planar constriction
because the centreline of the upstream flow, where the velocity is maximum, reaches
a stagnation point in the front of the cylinder, which results in strong extensional
components in both the axis of the cylinder and the cross-stream direction. In fact,
recent investigations have shown a possible upstream instability (Shi & Christopher
2016) that can grow and even become unstable; the coupling of upstream instabilities
and downstream wakes has been hypothesized to drive this complex flow, which can
be highly 3D, as shown by numerical studies (Omowunmi & Yuan 2010). Despite
recent efforts, the dynamical transition and the 3D flow structure of this upstream
instability has not been fully resolved experimentally.

Using 3D particle tracking methods, we report three main discoveries of the elastic
instability upstream of a single cylinder in confined channel flow. First, we report
the onset of upstream instability in the form of 3D corner vortices in front of the
cylinder (where the cylinder intersects the wall) whose size grows with increasing
flow rate. Second, beyond a critical flow rate, the vortex becomes unsteady and
switches between two bistable configurations that lead to symmetry breaking in the
cylinder axis direction and is highly 3D in nature. Surprisingly, the disturbance of the
elastic instability propagates far upstream in the form of an elastic wave, yet remains
relatively isolated from the flow in the cylinder wake. The elastic wave speed is
found to increase with increasing Wi.

2. Experimental methods

The flow of a dilute polymeric solution is investigated using a straight microchannel
made from polydimethylsiloxane with a rectangular cross-section with width W =
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FIGURE 1. (a) Schematic of the experimental setup. (b,c) Snapshots of the streak plots
showing the unsteady vortex upstream of the cylinder.

100 µm and height H= 60 µm. A single cylinder with diameter d= 50 µm is located
far (300W) from the inlet and is centred in the channel width direction. The device
schematic is shown in figure 1(a). Fluid flow is driven at a constant flow rate using
a syringe pump.

The polymeric solution is made by mixing 300 µg g−1 of polyacrylamide
(Polyscience, 18 × 106 MW) in 90 wt% glycerol aqueous mixture. Rheology
measurements can be found in Qin & Arratia (2017). The polymeric solution has
a nearly constant viscosity of � = 0:3 Pa s, close to solvent viscosity of 0:23 Pa s
for the shear rates used here. The Weissenberg number is defined from the strength
of elastic stress to viscous stress as Wi.̇ /= N1.̇ /=2̇ �.̇ /, where the characteristic
shear rate is defined by the mean centreline velocity, Ūc, ̇ = Ūc=H and N1 is the
first normal stress difference. The fluid is seeded with 1 µm polystyrene tracers at
0.01 vol%.

We visualize the channel using both traditional particle streak velocimetry and
novel in-line holographic 3D tracking. For the holographic tracking, the seeded flow
is illuminated by a laser (635 nm) mounted on an inverted microscope and recorded
using a high-speed camera – details in Salipante, Little & Hudson (2017). The
positions of the particles are determined using back-scattering reconstruction and 3D
velocity fields are obtained by differentiating Lagrangian particle trajectories.

3. Results

3.1. Upstream vortex: growth and fluctuation
We begin our analysis by investigating the flow structures upstream of the cylinder.
Figure 1(b,c) shows two snapshots of streaks taken at z= 10 µm (from bottom plane)
of the channel for Wi = 23. These two-dimensional streak plots illustrate the highly
unsteady vortices immediately upstream of the cylinder. We observe the presence
of a large recirculation region in front of the cylinder which clearly separates the
dominant bulk flow into two streams. To quantify the onset of the upstream vortex,
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FIGURE 2. (a) Normalized vortex length �=d (see text) as a function of Wi. Black dots
represent the mean of vortex length sampled over 200 s and open triangles represent the
maximum vortex length measured using holographic microscopy. The shaded region is
bounded by 5th and 95th percentiles. Four regimes of vortex dynamics can be identified. I:
steady Stokesian flow with fore–aft symmetry. II: emergence of a steady vortex in front
of the cylinder. III: onset of weak time-dependence. IV: pulsing vortex which collapses
and regenerates. Inset: r.m.s. fluctuation of �=d. (b) Streak plot for regime I. (c) Streak
plot showing vortex symmetry around the channel centreline at Wi ≈ 4. (d) Streak plot
showing subsequent symmetry breaking at Wi≈ 8 in regime III.

we monitor its length � normalized by the cylinder diameter d as a function of
Weissenberg number at a particular height (z= 10 µm). The length is defined as the
furthest upstream point with zero or negative velocity to the edge of the cylinder.
This stagnant vortex extends far upstream with maximum normalized vortex length
of approximately �=d ≈ 6, as in figure 1(b). The feature of the vortex is marked by
flow recirculation with relatively low or negative velocity compared to the bulk flow.
At higher Wi, the vortex is highly unsteady and frequently collapses (figure 1c) and
regenerates in time.

In figure 2(a), we plot the mean vortex length (black dots) for all sample
observations (80 snapshots over a duration of 200 s) as a function of Wi; the vortex
length � is normalized by the cylinder diameter d. We note that for the Newtonian
solvent, no vortex or irregular flow is observed at any flow rate. For the viscoelastic
fluid, however, we can clearly identify four regimes as a function of Wi. For Wi . 2
(regime I in figure 2a), the flow around the cylinder possesses fore–aft symmetry
identical to the creeping flow shown in figure 2(b). For Wi & 2, however, we see
the emergence of a recirculation zone comprised of two rotating vortex rolls that
are symmetric relative to the line y = 0 passing the centre of the cylinder, as in
figure 2(c). The flow is steady and the pattern does not change over several minutes.
As Wi is further increased, the stagnant region becomes highly elongated and extends
further upstream along the centreline (regime II in figure 2a), before reaching another
flow transition at Wi ≈ 4. For Wi & 4 (regime III in figure 2a), the extent of the
recirculation zone becomes unsteady and fluctuates weakly in time. This can be
seen in the 5th and 95th percentile of all observed vortex lengths, shown by the
shaded area in figure 2(a). These percentile curves begin to deviate from the mean
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in this regime, indicating variation in the sampled vortex lengths. The unsteadiness
of the vortex length is also reflected in the increase of the root-mean-square (r.m.s.)
fluctuation of �=d, shown in the inset of figure 2(a). The r.m.s. fluctuation, however,
saturates before reaching Wi ≈ 9. In this regime (III), the vortex varies significantly
in size with Wi and the lateral symmetry of the two vortex rolls is lost, as shown in
figure 2(d). Lastly, for Wi & 9, the flow enters a regime where the vortex frequently
collapses suddenly to a length of approximately 2d and then regenerates, as shown by
the constant 5th percentile curve despite increasing Wi. The vortex lengths frequently
‘pulse’ in time with large r.m.s. fluctuations, as shown previously by the streak plots
in figure 1(b,c). The mean vortex length continues to grow with Wi and extends far
upstream, reaching 6d (3W) at Wi= 16.

The origin of the vortex regions may be understood in terms of minimization of
the flow extension due to high fluid extensional viscosity, similar to other contraction
geometries (Boger 1987; Rodd et al. 2007). In such geometries, the flow field
develops recirculating vortices in order to produce an effectively longer entrance
region for the flow to increase in velocity gradually, which reduces the extension rate
�̇ ∼ @U=@x around the cylinder.

We note that in the high Trouton ratio limit (high extension), the length of a vortex
extending upstream from the lip of a planar contraction has been predicted to increase
linearly with Wi and is independent of the Trouton ratio (Lubansky et al. 2007). We
find similar behaviour here in that the (normalized) vortex length increases linearly
with Wi (figure 2a) although quantitative comparison is not applicable between the
two geometries.

Although the observed vortex is measured in an x–y plane, the structure and
dynamics are far from two-dimensional. In fact, the structure of the flow switches
from two bistable modes in the z direction, as we explore next.

3.2. Upstream vortex: 3D structures
In order to visualize the full flow structure upstream of the cylinder, we use
holographic particle tracking to reconstruct the 3D flow field. To identify the stagnant
region, characterized by negative stream-wise velocity, we plot the iso-surface where
the velocity magnitude is zero. Figure 3(a,b) shows two snapshots of the spatial
structure of the stagnant region at different times. It is clear that the flow is in fact
made up of a pair of two separate recirculation zones originating near the corner
of the cylinder with the walls. The vortex regions extend upstream along the top
and bottom surfaces. Moreover, the vortex growth along one wall is accompanied
by the suppression of the vortex on the other wall, which is confined to the space
immediately in front of the cylinder. The switching between the two states occurs
irregularly in time: as the stagnant zone collapses on one side, the other vortex
reforms.

The flow symmetry breaking in the z-direction is evident in figure 3(c,d), where
the corresponding velocity field in a x–z cross-section along the channel centreline
is plotted. The presence of the adverse flow (blue) clearly alters the surrounding bulk
flow, as shown by the streamwise flow (red) in figure 3(c,d). The generation of adverse
flow originates along the upstream side of the cylinder that drives flow along top or
bottom surface. In the pulsing regime, the extended vortex region can separate from
the cylinder and move upstream along the top or bottom surface. Meanwhile, the other
vortex expands in the z-direction and fills the space directly in front of the cylinder.

In figure 4(a,b), we distinguish the bulk flow from the vortex region by comparing
the high-velocity iso-surface U = 6:9 mm s−1 with the low-velocity iso-surface

864 R2-5

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ri
nc

et
on

 U
ni

v,
 o

n 
11

 F
eb

 2
01

9 
at

 1
4:

30
:3

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.73


B. Qin, P. F. Salipante, S. D. Hudson and P. E. Arratia

0

Post

Post

-50-100-150-200-250-300

8
U (mm s-1)

6420-2

0-50-100-150
X (µm)X (µm)Y (µm)

Z 
(µ

m
)

-200-250-300
0

50

0
20
40
60

0-100
-200-300

50
0

30
60

-500

Z 
(µ

m
)

Z 
(µ

m
)

Z 
(µ

m
)

0-100
-200-300

50
0

30
60

(a) (c)

(d)(b)

Flow

-500

FIGURE 3. Three-dimensional structure of the stagnant vortex upstream of the cylinder
in the pulsing regime (Wi= 23). (a) Snapshot of the stagnant vortex defined by the iso-
surface for zero speed U= 0, showing the dominance of the vortex near the top wall. (b)
The complementary case where the vortex near the bottom wall dominates. (c,d) Velocity
map along a cross-section passing through the channel centreline for the cases respectively
shown in (a,b).
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FIGURE 4. (a,b) Surfaces of equal velocity in front of the cylinder at two different time
instances. Regions of zero x-velocity form in front of the cylinder along the top or bottom
walls. High-velocity regions (U= 6:9 mm s−1 isosurface) separate along the left and right
sides of the channel. (c) The volume of the high-speed flow region (U > 6:9 mm s−1)
compared to the volume of the back flow U 6 0 over a length of 1W upstream of the
cylinder. The strong correlation indicates that the vortex region acts to constrict the bulk
flow into a smaller region.

U = 0 mm s−1, measured simultaneously. We find that when the extended stagnant
vortices are present, the bulk flow separates into two high-velocity regions surrounding
the stagnant region. Similarly, periods of weakened vortex development correspond
to transitional states where the bulk flow occupies a larger cross-section at a lower
velocity. In figure 4(c), we compare the volume of the stagnant vortex (low-velocity
region) and the bulk flow (high-velocity region) within 1W upstream of the cylinder,
which shows that the two signals are indeed highly correlated.
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The flow symmetry also breaks down in the span-wise y-direction, resulting in
a shift of the primary flow to either the left or right of the channel. For instance,
figure 4(a) shows the region has shifted the predominant flow towards the left side
and figure 4(b) shows the dominant flow on the right. This results in a greater flow
along the right side of the cylinder. In fact, the flow rates around either side of the
cylinder are found to be anti-correlated due to the constant volume flow rate, but can
vary by approximately 20 % from the mean, suggesting flow switching and symmetry
breaking in the span-wise y direction. The lateral symmetry breaking and fluctuations
may be intimately linked to the onset of finite flow perturbations observed in Pan
et al. (2013) and Qin & Arratia (2017).

Lastly, although the variation in flow to either side of the cylinder may produce
further flow fluctuation downstream, the flow instability associated with the vortex
formation is only weakly communicated downstream. In fact, we find that the flow
disturbance actually propagates far upstream.

3.3. Disturbance propagation and elastic waves
The unsteady vortex is accompanied by bulk flow instabilities far upstream. To
quantify the fluctuation in the unstable flow, we conduct particle tracking velocimetry
focused on a small window in the channel centreline (z = 30 µm) and monitor the
instantaneous stream-wise velocity uc at various channel x locations. The fluctuation
is then obtained by subtracting the mean velocity from the instantaneous velocity,
u′c = uc − uc. To facilitate comparison between various flow rates, we normalize the
velocity fluctuation with the mean centreline velocity Uc far from the cylinder. In
figure 5(a,b), we plot the time series of the normalized velocity fluctuations at −5W
and −3W upstream of the cylinder. We observe large fluctuations (20 % of the mean
flow) for the viscoelastic flow compared to the Newtonian solvent (grey line). The
flow downstream of the cylinder at a comparable location, however, sees a different
type of fluctuation. The amplitude of the fluctuation is smaller and the signal shows
frequent jumps to high velocity amidst periods of dwelling at low velocities. This
suggests two different instabilities up- and downstream of the cylinder.

The impact of the vortex instability is not confined to the vicinity of the cylinder
but propagates upstream. In figure 5(d), we plot the root mean square velocity
fluctuation � normalized by Uc at various x locations. For low Weissenberg number
(Wi . 1), we see very little velocity fluctuation at any channel location. As Wi
increases, we see that the flow downstream of the cylinder becomes unstable, as
expected from the well-known wake instability. The flow upstream, however, also
shows a significant increase in velocity fluctuations. As Wi further increases, the
upstream velocity fluctuation grows rapidly in strength and propagates increasingly
further upstream. At Wi = 23, it can be felt over 10W upstream of the cylinder
and the largest fluctuation magnitude is in front of the cylinder at −3W. Very far
upstream (20W above), the flow is found to be steady, with fluctuations close to the
instrument noise.

The propagation of upstream disturbances suggests a mechanism for transmitting
perturbations against the primary flow direction, even in the presence of strong
advection. Specifically, we investigate relaying of disturbances by computing the
two-point cross-correlation between the two observation points separated by a
distance ‘. In figure 6(a), we compute the cross-correlation coefficient for two
streamwise velocity magnitudes measured simultaneously at −3W and −2W upstream
of the cylinder. First, we see that the two signals are highly correlated, with a
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FIGURE 5. (a) Fluctuation of the centreline velocity, u′c, normalized by the mean velocity
far from the cylinder at an upstream location x = −5W for Wi = 23, where upstream
vortices are pulsing, (b) at x = −3W and (c) downstream at x = 3W. The grey line
represents the flow of the Newtonian fluid at similar flow rates in each of these plots. (d)
The normalized root mean square of the centreline velocity fluctuation at various channel
locations and Weissenberg numbers.
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FIGURE 6. (a) Cross-correlation between pairs of stream-wise velocity signals measured
simultaneously at different locations for Wi= 23. The pairwise locations are indicated in
the legend. (b) The elastic wave speed computed via the peak shift time as a function of
Wi, obtained from the pair −2W⊗−W, where the disturbance is strongest. Inset: lag time
and various time scales to compute the elastic wave. Error bars represent the uncertainty
estimated from statistical bootstrapping using time series sub-intervals.

maximum �.�/ reaching almost 0.8. Note that perfect correlation has � = 1, perfect
anti-correlation has � =−1, while uncorrelated signal has � = 0. However, the peak
shift time �p is approximately 0.14 s, which indicates that the velocity signal at −3W
leads −2W by 0.14 s. This lead time turns out to be much longer than the advection
timescale, ‘=Uc, which is approximately 0.018 s.

The propagation of the disturbance due to the elastic instability has a smaller effect
on the flow in the cylinder wake. When we compare the velocity signal measured
simultaneously 1W upstream and downstream of the cylinder we find that the signals
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are weakly correlated compared to those upstream. However, notably, the peak shift
time is similar to the correlations made at two points upstream of the cylinder. This
weaker correlation is expected from the very different velocity time series shown
in figure 5(b,c), where the characteristics of the fluctuations are markedly different.
Although some of the flow fluctuations are communicated downstream of the cylinder
due to the finite relaxation time, the instability mechanisms of the flow upstream and
downstream the cylinder are clearly distinct; the first relies on the propagation of
elastic wave while the latter relies on the elastic hoop stresses.

The increase in peak shift time occurs if there is a wave travelling upstream with
wave speed ce that goes against the bulk advection in the lab frame. The net result is a
reduction in speed and increase in the time needed to travel, �p= ‘=.Uc− ce/. We note
that the minus sign implies the wave is going in the direction opposite to the bulk flow
and the shift time reflects the competition between the wave speed going upstream
and the advection of fluid downstream. All quantities other than ce can be directly
measured – we can then compute ce. Since the flow is steady without fluctuation
below Wi = 4, we only report results for Wi & 4. Additionally, the accuracy of the
method relies on a large velocity fluctuation from which a time shift can be measured.
We therefore focus on positions with large fluctuations and note that only the flow
in the pulsing regime has a clear wave speed. The peak shift times are measured to
extract the corresponding wave speed between two locations −2W ⊗ −W, shown in
figure 6(b) for various Weissenberg number.

As shown in figure 6(b), the elastic wave speed increases with Weissenberg number
for Wi&10, rather than maintaining a constant value. This implies that as Wi increases,
the disturbance increases in strength and propagates upstream faster. A comparison of
the measured mean advection time, l=Uc, and peak shift times (inset of figure 6b)
show that both timescales decrease in a similar power-law relationship with Wi. This
is in contrast to the fluid relaxation time λ.̇ /, which decreases only slightly over
this range of Wi, showing that the wave speed does not simply scale with the polymer
relaxation time. An increase in the wave speed upstream of the cylinder with Wi gives
an indication of an absolute instability, rather than one that is convected with the flow
(Monkewitz 1988; Van Saarloos 2003). Nevertheless, the finite extent of the upstream
perturbations suggests there is a mechanism for dissipation or slow down of the elastic
wave.

4. Conclusion

Using holographic particle tracking methods, we study the structure and dynamics
of the flow of viscoelastic fluids around a confined cylinder. In contrast to most
previous studies, we observe the formation of a stagnant flow region in front of the
cylinder. We attribute the difference to the confinement of the microchannel, which
produces a strong extensional flow component similar to a planar constriction where
entrance vortices are observed. However, the flow around a cylinder differs from
contraction type flows since the cylinder separates the flow into two separate streams.
The stagnant vortex regions form along the top and bottom of the channel at a critical
Wi number. As the flow rate increases, the streamwise length of the vortex increases
linearly with Wi, similar to the theory for entrance flows of high-Trouton-ratio fluids.

The velocity fluctuations of the viscoelastic fluid in front of the cylinder are 3D
in nature, notably shifting upwards and downwards (in the axial direction of the
cylinder) around stagnant regions which extend along the top and bottom walls.
Additionally, the flow separation around the cylinder results in a breakdown in the
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left–right flow symmetry, which biases the bulk flow to one side of the cylinder over
the other. At sufficiently high Wi, the flow becomes temporally unstable, undergoes
rapid switching between dominant states, and produces a violent pulsing behaviour.
The strong symmetry breaking in the both the channel height and width direction
results from the confined cylinder geometry, which provides more varied flow fields
compared to a planar contraction.

Strikingly, the disturbance propagates beyond the extent of the vortex. We observe
that the flow downstream of the cylinder also becomes unstable, although the strength
of the instability upstream is considerable stronger at high Wi. Although separated
only by a cylinder 50 µm in diameter, the flow fields before and after the post
appear to be fairly isolated from each other and possess very distinct temporal and
spatial features. The cross-correlation between the flow at two positions before the
post clearly shows the propagation of an elastic wave, which provides a mechanism
by which perturbations can travel upstream. The elastic wave is found to increase
in speed and penetrate farther upstream with Wi, indicating an absolute instability
emanating from the cylinder. Our results provide insights into the mechanisms by
which perturbations travel in viscoelastic fluids and build towards understanding more
complex flows, such as in porous media.
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